Mathbox for Jeff Madsen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bfplem1 Structured version   Visualization version   GIF version

Theorem bfplem1 33751
 Description: Lemma for bfp 33753. The sequence 𝐺, which simply starts from any point in the space and iterates 𝐹, satisfies the property that the distance from 𝐺(𝑛) to 𝐺(𝑛 + 1) decreases by at least 𝐾 after each step. Thus, the total distance from any 𝐺(𝑖) to 𝐺(𝑗) is bounded by a geometric series, and the sequence is Cauchy. Therefore, it converges to a point ((⇝𝑡‘𝐽)‘𝐺) since the space is complete. (Contributed by Jeff Madsen, 17-Jun-2014.)
Hypotheses
Ref Expression
bfp.2 (𝜑𝐷 ∈ (CMet‘𝑋))
bfp.3 (𝜑𝑋 ≠ ∅)
bfp.4 (𝜑𝐾 ∈ ℝ+)
bfp.5 (𝜑𝐾 < 1)
bfp.6 (𝜑𝐹:𝑋𝑋)
bfp.7 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))
bfp.8 𝐽 = (MetOpen‘𝐷)
bfp.9 (𝜑𝐴𝑋)
bfp.10 𝐺 = seq1((𝐹 ∘ 1st ), (ℕ × {𝐴}))
Assertion
Ref Expression
bfplem1 (𝜑𝐺(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝐺))
Distinct variable groups:   𝑥,𝑦,𝐷   𝑥,𝐺,𝑦   𝑥,𝐽,𝑦   𝜑,𝑥,𝑦   𝑥,𝐹,𝑦   𝑥,𝐾,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem bfplem1
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bfp.2 . . 3 (𝜑𝐷 ∈ (CMet‘𝑋))
2 cmetmet 23130 . . . . 5 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
31, 2syl 17 . . . 4 (𝜑𝐷 ∈ (Met‘𝑋))
4 nnuz 11761 . . . . 5 ℕ = (ℤ‘1)
5 bfp.10 . . . . 5 𝐺 = seq1((𝐹 ∘ 1st ), (ℕ × {𝐴}))
6 1zzd 11446 . . . . 5 (𝜑 → 1 ∈ ℤ)
7 bfp.9 . . . . 5 (𝜑𝐴𝑋)
8 bfp.6 . . . . 5 (𝜑𝐹:𝑋𝑋)
94, 5, 6, 7, 8algrf 15333 . . . 4 (𝜑𝐺:ℕ⟶𝑋)
108, 7ffvelrnd 6400 . . . . . 6 (𝜑 → (𝐹𝐴) ∈ 𝑋)
11 metcl 22184 . . . . . 6 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋 ∧ (𝐹𝐴) ∈ 𝑋) → (𝐴𝐷(𝐹𝐴)) ∈ ℝ)
123, 7, 10, 11syl3anc 1366 . . . . 5 (𝜑 → (𝐴𝐷(𝐹𝐴)) ∈ ℝ)
13 bfp.4 . . . . 5 (𝜑𝐾 ∈ ℝ+)
1412, 13rerpdivcld 11941 . . . 4 (𝜑 → ((𝐴𝐷(𝐹𝐴)) / 𝐾) ∈ ℝ)
15 bfp.5 . . . 4 (𝜑𝐾 < 1)
16 fveq2 6229 . . . . . . . . 9 (𝑗 = 1 → (𝐺𝑗) = (𝐺‘1))
17 oveq1 6697 . . . . . . . . . 10 (𝑗 = 1 → (𝑗 + 1) = (1 + 1))
1817fveq2d 6233 . . . . . . . . 9 (𝑗 = 1 → (𝐺‘(𝑗 + 1)) = (𝐺‘(1 + 1)))
1916, 18oveq12d 6708 . . . . . . . 8 (𝑗 = 1 → ((𝐺𝑗)𝐷(𝐺‘(𝑗 + 1))) = ((𝐺‘1)𝐷(𝐺‘(1 + 1))))
20 oveq2 6698 . . . . . . . . 9 (𝑗 = 1 → (𝐾𝑗) = (𝐾↑1))
2120oveq2d 6706 . . . . . . . 8 (𝑗 = 1 → (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑗)) = (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑1)))
2219, 21breq12d 4698 . . . . . . 7 (𝑗 = 1 → (((𝐺𝑗)𝐷(𝐺‘(𝑗 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑗)) ↔ ((𝐺‘1)𝐷(𝐺‘(1 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑1))))
2322imbi2d 329 . . . . . 6 (𝑗 = 1 → ((𝜑 → ((𝐺𝑗)𝐷(𝐺‘(𝑗 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑗))) ↔ (𝜑 → ((𝐺‘1)𝐷(𝐺‘(1 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑1)))))
24 fveq2 6229 . . . . . . . . 9 (𝑗 = 𝑘 → (𝐺𝑗) = (𝐺𝑘))
25 oveq1 6697 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝑗 + 1) = (𝑘 + 1))
2625fveq2d 6233 . . . . . . . . 9 (𝑗 = 𝑘 → (𝐺‘(𝑗 + 1)) = (𝐺‘(𝑘 + 1)))
2724, 26oveq12d 6708 . . . . . . . 8 (𝑗 = 𝑘 → ((𝐺𝑗)𝐷(𝐺‘(𝑗 + 1))) = ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))))
28 oveq2 6698 . . . . . . . . 9 (𝑗 = 𝑘 → (𝐾𝑗) = (𝐾𝑘))
2928oveq2d 6706 . . . . . . . 8 (𝑗 = 𝑘 → (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑗)) = (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)))
3027, 29breq12d 4698 . . . . . . 7 (𝑗 = 𝑘 → (((𝐺𝑗)𝐷(𝐺‘(𝑗 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑗)) ↔ ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘))))
3130imbi2d 329 . . . . . 6 (𝑗 = 𝑘 → ((𝜑 → ((𝐺𝑗)𝐷(𝐺‘(𝑗 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑗))) ↔ (𝜑 → ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)))))
32 fveq2 6229 . . . . . . . . 9 (𝑗 = (𝑘 + 1) → (𝐺𝑗) = (𝐺‘(𝑘 + 1)))
33 oveq1 6697 . . . . . . . . . 10 (𝑗 = (𝑘 + 1) → (𝑗 + 1) = ((𝑘 + 1) + 1))
3433fveq2d 6233 . . . . . . . . 9 (𝑗 = (𝑘 + 1) → (𝐺‘(𝑗 + 1)) = (𝐺‘((𝑘 + 1) + 1)))
3532, 34oveq12d 6708 . . . . . . . 8 (𝑗 = (𝑘 + 1) → ((𝐺𝑗)𝐷(𝐺‘(𝑗 + 1))) = ((𝐺‘(𝑘 + 1))𝐷(𝐺‘((𝑘 + 1) + 1))))
36 oveq2 6698 . . . . . . . . 9 (𝑗 = (𝑘 + 1) → (𝐾𝑗) = (𝐾↑(𝑘 + 1)))
3736oveq2d 6706 . . . . . . . 8 (𝑗 = (𝑘 + 1) → (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑗)) = (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))))
3835, 37breq12d 4698 . . . . . . 7 (𝑗 = (𝑘 + 1) → (((𝐺𝑗)𝐷(𝐺‘(𝑗 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑗)) ↔ ((𝐺‘(𝑘 + 1))𝐷(𝐺‘((𝑘 + 1) + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1)))))
3938imbi2d 329 . . . . . 6 (𝑗 = (𝑘 + 1) → ((𝜑 → ((𝐺𝑗)𝐷(𝐺‘(𝑗 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑗))) ↔ (𝜑 → ((𝐺‘(𝑘 + 1))𝐷(𝐺‘((𝑘 + 1) + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))))))
4012leidd 10632 . . . . . . 7 (𝜑 → (𝐴𝐷(𝐹𝐴)) ≤ (𝐴𝐷(𝐹𝐴)))
414, 5, 6, 7algr0 15332 . . . . . . . 8 (𝜑 → (𝐺‘1) = 𝐴)
42 1nn 11069 . . . . . . . . . 10 1 ∈ ℕ
434, 5, 6, 7, 8algrp1 15334 . . . . . . . . . 10 ((𝜑 ∧ 1 ∈ ℕ) → (𝐺‘(1 + 1)) = (𝐹‘(𝐺‘1)))
4442, 43mpan2 707 . . . . . . . . 9 (𝜑 → (𝐺‘(1 + 1)) = (𝐹‘(𝐺‘1)))
4541fveq2d 6233 . . . . . . . . 9 (𝜑 → (𝐹‘(𝐺‘1)) = (𝐹𝐴))
4644, 45eqtrd 2685 . . . . . . . 8 (𝜑 → (𝐺‘(1 + 1)) = (𝐹𝐴))
4741, 46oveq12d 6708 . . . . . . 7 (𝜑 → ((𝐺‘1)𝐷(𝐺‘(1 + 1))) = (𝐴𝐷(𝐹𝐴)))
4813rpred 11910 . . . . . . . . . . 11 (𝜑𝐾 ∈ ℝ)
4948recnd 10106 . . . . . . . . . 10 (𝜑𝐾 ∈ ℂ)
5049exp1d 13043 . . . . . . . . 9 (𝜑 → (𝐾↑1) = 𝐾)
5150oveq2d 6706 . . . . . . . 8 (𝜑 → (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑1)) = (((𝐴𝐷(𝐹𝐴)) / 𝐾) · 𝐾))
5212recnd 10106 . . . . . . . . 9 (𝜑 → (𝐴𝐷(𝐹𝐴)) ∈ ℂ)
5313rpne0d 11915 . . . . . . . . 9 (𝜑𝐾 ≠ 0)
5452, 49, 53divcan1d 10840 . . . . . . . 8 (𝜑 → (((𝐴𝐷(𝐹𝐴)) / 𝐾) · 𝐾) = (𝐴𝐷(𝐹𝐴)))
5551, 54eqtrd 2685 . . . . . . 7 (𝜑 → (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑1)) = (𝐴𝐷(𝐹𝐴)))
5640, 47, 553brtr4d 4717 . . . . . 6 (𝜑 → ((𝐺‘1)𝐷(𝐺‘(1 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑1)))
579ffvelrnda 6399 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ∈ 𝑋)
58 peano2nn 11070 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
59 ffvelrn 6397 . . . . . . . . . . . . 13 ((𝐺:ℕ⟶𝑋 ∧ (𝑘 + 1) ∈ ℕ) → (𝐺‘(𝑘 + 1)) ∈ 𝑋)
609, 58, 59syl2an 493 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐺‘(𝑘 + 1)) ∈ 𝑋)
6157, 60jca 553 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝐺𝑘) ∈ 𝑋 ∧ (𝐺‘(𝑘 + 1)) ∈ 𝑋))
62 bfp.7 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))
6362ralrimivva 3000 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝑋𝑦𝑋 ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))
6463adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ∀𝑥𝑋𝑦𝑋 ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))
65 fveq2 6229 . . . . . . . . . . . . . 14 (𝑥 = (𝐺𝑘) → (𝐹𝑥) = (𝐹‘(𝐺𝑘)))
6665oveq1d 6705 . . . . . . . . . . . . 13 (𝑥 = (𝐺𝑘) → ((𝐹𝑥)𝐷(𝐹𝑦)) = ((𝐹‘(𝐺𝑘))𝐷(𝐹𝑦)))
67 oveq1 6697 . . . . . . . . . . . . . 14 (𝑥 = (𝐺𝑘) → (𝑥𝐷𝑦) = ((𝐺𝑘)𝐷𝑦))
6867oveq2d 6706 . . . . . . . . . . . . 13 (𝑥 = (𝐺𝑘) → (𝐾 · (𝑥𝐷𝑦)) = (𝐾 · ((𝐺𝑘)𝐷𝑦)))
6966, 68breq12d 4698 . . . . . . . . . . . 12 (𝑥 = (𝐺𝑘) → (((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)) ↔ ((𝐹‘(𝐺𝑘))𝐷(𝐹𝑦)) ≤ (𝐾 · ((𝐺𝑘)𝐷𝑦))))
70 fveq2 6229 . . . . . . . . . . . . . 14 (𝑦 = (𝐺‘(𝑘 + 1)) → (𝐹𝑦) = (𝐹‘(𝐺‘(𝑘 + 1))))
7170oveq2d 6706 . . . . . . . . . . . . 13 (𝑦 = (𝐺‘(𝑘 + 1)) → ((𝐹‘(𝐺𝑘))𝐷(𝐹𝑦)) = ((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))))
72 oveq2 6698 . . . . . . . . . . . . . 14 (𝑦 = (𝐺‘(𝑘 + 1)) → ((𝐺𝑘)𝐷𝑦) = ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))))
7372oveq2d 6706 . . . . . . . . . . . . 13 (𝑦 = (𝐺‘(𝑘 + 1)) → (𝐾 · ((𝐺𝑘)𝐷𝑦)) = (𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1)))))
7471, 73breq12d 4698 . . . . . . . . . . . 12 (𝑦 = (𝐺‘(𝑘 + 1)) → (((𝐹‘(𝐺𝑘))𝐷(𝐹𝑦)) ≤ (𝐾 · ((𝐺𝑘)𝐷𝑦)) ↔ ((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ≤ (𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))))))
7569, 74rspc2v 3353 . . . . . . . . . . 11 (((𝐺𝑘) ∈ 𝑋 ∧ (𝐺‘(𝑘 + 1)) ∈ 𝑋) → (∀𝑥𝑋𝑦𝑋 ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)) → ((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ≤ (𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))))))
7661, 64, 75sylc 65 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ≤ (𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1)))))
773adantr 480 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 𝐷 ∈ (Met‘𝑋))
788adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 𝐹:𝑋𝑋)
7978, 57ffvelrnd 6400 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝐺𝑘)) ∈ 𝑋)
8078, 60ffvelrnd 6400 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝐺‘(𝑘 + 1))) ∈ 𝑋)
81 metcl 22184 . . . . . . . . . . . 12 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘(𝐺𝑘)) ∈ 𝑋 ∧ (𝐹‘(𝐺‘(𝑘 + 1))) ∈ 𝑋) → ((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ∈ ℝ)
8277, 79, 80, 81syl3anc 1366 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ∈ ℝ)
8348adantr 480 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 𝐾 ∈ ℝ)
84 metcl 22184 . . . . . . . . . . . . 13 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐺𝑘) ∈ 𝑋 ∧ (𝐺‘(𝑘 + 1)) ∈ 𝑋) → ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ∈ ℝ)
8577, 57, 60, 84syl3anc 1366 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ∈ ℝ)
8683, 85remulcld 10108 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1)))) ∈ ℝ)
8714adantr 480 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((𝐴𝐷(𝐹𝐴)) / 𝐾) ∈ ℝ)
8858adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
8988nnnn0d 11389 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ0)
9083, 89reexpcld 13065 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐾↑(𝑘 + 1)) ∈ ℝ)
9187, 90remulcld 10108 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))) ∈ ℝ)
92 letr 10169 . . . . . . . . . . 11 ((((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ∈ ℝ ∧ (𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1)))) ∈ ℝ ∧ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))) ∈ ℝ) → ((((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ≤ (𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1)))) ∧ (𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1)))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1)))) → ((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1)))))
9382, 86, 91, 92syl3anc 1366 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ((((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ≤ (𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1)))) ∧ (𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1)))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1)))) → ((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1)))))
9476, 93mpand 711 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1)))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))) → ((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1)))))
95 nnnn0 11337 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
96 reexpcl 12917 . . . . . . . . . . . . 13 ((𝐾 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐾𝑘) ∈ ℝ)
9748, 95, 96syl2an 493 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐾𝑘) ∈ ℝ)
9887, 97remulcld 10108 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)) ∈ ℝ)
9913rpgt0d 11913 . . . . . . . . . . . 12 (𝜑 → 0 < 𝐾)
10099adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → 0 < 𝐾)
101 lemul1 10913 . . . . . . . . . . 11 ((((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ∈ ℝ ∧ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)) ∈ ℝ ∧ (𝐾 ∈ ℝ ∧ 0 < 𝐾)) → (((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)) ↔ (((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) · 𝐾) ≤ ((((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)) · 𝐾)))
10285, 98, 83, 100, 101syl112anc 1370 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)) ↔ (((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) · 𝐾) ≤ ((((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)) · 𝐾)))
10385recnd 10106 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ∈ ℂ)
10449adantr 480 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 𝐾 ∈ ℂ)
105103, 104mulcomd 10099 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) · 𝐾) = (𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1)))))
10687recnd 10106 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → ((𝐴𝐷(𝐹𝐴)) / 𝐾) ∈ ℂ)
10797recnd 10106 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝐾𝑘) ∈ ℂ)
108106, 107, 104mulassd 10101 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)) · 𝐾) = (((𝐴𝐷(𝐹𝐴)) / 𝐾) · ((𝐾𝑘) · 𝐾)))
109 expp1 12907 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐾↑(𝑘 + 1)) = ((𝐾𝑘) · 𝐾))
11049, 95, 109syl2an 493 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝐾↑(𝑘 + 1)) = ((𝐾𝑘) · 𝐾))
111110oveq2d 6706 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))) = (((𝐴𝐷(𝐹𝐴)) / 𝐾) · ((𝐾𝑘) · 𝐾)))
112108, 111eqtr4d 2688 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)) · 𝐾) = (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))))
113105, 112breq12d 4698 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ((((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) · 𝐾) ≤ ((((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)) · 𝐾) ↔ (𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1)))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1)))))
114102, 113bitrd 268 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)) ↔ (𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1)))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1)))))
1154, 5, 6, 7, 8algrp1 15334 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝐺‘(𝑘 + 1)) = (𝐹‘(𝐺𝑘)))
1164, 5, 6, 7, 8algrp1 15334 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 + 1) ∈ ℕ) → (𝐺‘((𝑘 + 1) + 1)) = (𝐹‘(𝐺‘(𝑘 + 1))))
11758, 116sylan2 490 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝐺‘((𝑘 + 1) + 1)) = (𝐹‘(𝐺‘(𝑘 + 1))))
118115, 117oveq12d 6708 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ((𝐺‘(𝑘 + 1))𝐷(𝐺‘((𝑘 + 1) + 1))) = ((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))))
119118breq1d 4695 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (((𝐺‘(𝑘 + 1))𝐷(𝐺‘((𝑘 + 1) + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))) ↔ ((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1)))))
12094, 114, 1193imtr4d 283 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)) → ((𝐺‘(𝑘 + 1))𝐷(𝐺‘((𝑘 + 1) + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1)))))
121120expcom 450 . . . . . . 7 (𝑘 ∈ ℕ → (𝜑 → (((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)) → ((𝐺‘(𝑘 + 1))𝐷(𝐺‘((𝑘 + 1) + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))))))
122121a2d 29 . . . . . 6 (𝑘 ∈ ℕ → ((𝜑 → ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘))) → (𝜑 → ((𝐺‘(𝑘 + 1))𝐷(𝐺‘((𝑘 + 1) + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))))))
12323, 31, 39, 31, 56, 122nnind 11076 . . . . 5 (𝑘 ∈ ℕ → (𝜑 → ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘))))
124123impcom 445 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)))
1253, 9, 14, 13, 15, 124geomcau 33685 . . 3 (𝜑𝐺 ∈ (Cau‘𝐷))
126 bfp.8 . . . 4 𝐽 = (MetOpen‘𝐷)
127126cmetcau 23133 . . 3 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐺 ∈ (Cau‘𝐷)) → 𝐺 ∈ dom (⇝𝑡𝐽))
1281, 125, 127syl2anc 694 . 2 (𝜑𝐺 ∈ dom (⇝𝑡𝐽))
129 metxmet 22186 . . . 4 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
130126methaus 22372 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Haus)
1313, 129, 1303syl 18 . . 3 (𝜑𝐽 ∈ Haus)
132 lmfun 21233 . . 3 (𝐽 ∈ Haus → Fun (⇝𝑡𝐽))
133 funfvbrb 6370 . . 3 (Fun (⇝𝑡𝐽) → (𝐺 ∈ dom (⇝𝑡𝐽) ↔ 𝐺(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝐺)))
134131, 132, 1333syl 18 . 2 (𝜑 → (𝐺 ∈ dom (⇝𝑡𝐽) ↔ 𝐺(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝐺)))
135128, 134mpbid 222 1 (𝜑𝐺(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝐺))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1523   ∈ wcel 2030   ≠ wne 2823  ∀wral 2941  ∅c0 3948  {csn 4210   class class class wbr 4685   × cxp 5141  dom cdm 5143   ∘ ccom 5147  Fun wfun 5920  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690  1st c1st 7208  ℂcc 9972  ℝcr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   < clt 10112   ≤ cle 10113   / cdiv 10722  ℕcn 11058  ℕ0cn0 11330  ℝ+crp 11870  seqcseq 12841  ↑cexp 12900  ∞Metcxmt 19779  Metcme 19780  MetOpencmopn 19784  ⇝𝑡clm 21078  Hauscha 21160  Caucca 23097  CMetcms 23098 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-rlim 14264  df-sum 14461  df-rest 16130  df-topgen 16151  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-top 20747  df-topon 20764  df-bases 20798  df-ntr 20872  df-nei 20950  df-lm 21081  df-haus 21167  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-cfil 23099  df-cau 23100  df-cmet 23101 This theorem is referenced by:  bfplem2  33752
 Copyright terms: Public domain W3C validator