Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bfplem1 Structured version   Visualization version   GIF version

Theorem bfplem1 32681
Description: Lemma for bfp 32683. The sequence 𝐺, which simply starts from any point in the space and iterates 𝐹, satisfies the property that the distance from 𝐺(𝑛) to 𝐺(𝑛 + 1) decreases by at least 𝐾 after each step. Thus, the total distance from any 𝐺(𝑖) to 𝐺(𝑗) is bounded by a geometric series, and the sequence is Cauchy. Therefore, it converges to a point ((⇝𝑡𝐽)‘𝐺) since the space is complete. (Contributed by Jeff Madsen, 17-Jun-2014.)
Hypotheses
Ref Expression
bfp.2 (𝜑𝐷 ∈ (CMet‘𝑋))
bfp.3 (𝜑𝑋 ≠ ∅)
bfp.4 (𝜑𝐾 ∈ ℝ+)
bfp.5 (𝜑𝐾 < 1)
bfp.6 (𝜑𝐹:𝑋𝑋)
bfp.7 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))
bfp.8 𝐽 = (MetOpen‘𝐷)
bfp.9 (𝜑𝐴𝑋)
bfp.10 𝐺 = seq1((𝐹 ∘ 1st ), (ℕ × {𝐴}))
Assertion
Ref Expression
bfplem1 (𝜑𝐺(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝐺))
Distinct variable groups:   𝑥,𝑦,𝐷   𝑥,𝐺,𝑦   𝑥,𝐽,𝑦   𝜑,𝑥,𝑦   𝑥,𝐹,𝑦   𝑥,𝐾,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem bfplem1
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bfp.2 . . 3 (𝜑𝐷 ∈ (CMet‘𝑋))
2 cmetmet 22756 . . . . 5 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
31, 2syl 17 . . . 4 (𝜑𝐷 ∈ (Met‘𝑋))
4 nnuz 11463 . . . . 5 ℕ = (ℤ‘1)
5 bfp.10 . . . . 5 𝐺 = seq1((𝐹 ∘ 1st ), (ℕ × {𝐴}))
6 1zzd 11149 . . . . 5 (𝜑 → 1 ∈ ℤ)
7 bfp.9 . . . . 5 (𝜑𝐴𝑋)
8 bfp.6 . . . . 5 (𝜑𝐹:𝑋𝑋)
94, 5, 6, 7, 8algrf 15000 . . . 4 (𝜑𝐺:ℕ⟶𝑋)
108, 7ffvelrnd 6152 . . . . . 6 (𝜑 → (𝐹𝐴) ∈ 𝑋)
11 metcl 21849 . . . . . 6 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋 ∧ (𝐹𝐴) ∈ 𝑋) → (𝐴𝐷(𝐹𝐴)) ∈ ℝ)
123, 7, 10, 11syl3anc 1317 . . . . 5 (𝜑 → (𝐴𝐷(𝐹𝐴)) ∈ ℝ)
13 bfp.4 . . . . 5 (𝜑𝐾 ∈ ℝ+)
1412, 13rerpdivcld 11645 . . . 4 (𝜑 → ((𝐴𝐷(𝐹𝐴)) / 𝐾) ∈ ℝ)
15 bfp.5 . . . 4 (𝜑𝐾 < 1)
16 fveq2 5987 . . . . . . . . 9 (𝑗 = 1 → (𝐺𝑗) = (𝐺‘1))
17 oveq1 6433 . . . . . . . . . 10 (𝑗 = 1 → (𝑗 + 1) = (1 + 1))
1817fveq2d 5991 . . . . . . . . 9 (𝑗 = 1 → (𝐺‘(𝑗 + 1)) = (𝐺‘(1 + 1)))
1916, 18oveq12d 6444 . . . . . . . 8 (𝑗 = 1 → ((𝐺𝑗)𝐷(𝐺‘(𝑗 + 1))) = ((𝐺‘1)𝐷(𝐺‘(1 + 1))))
20 oveq2 6434 . . . . . . . . 9 (𝑗 = 1 → (𝐾𝑗) = (𝐾↑1))
2120oveq2d 6442 . . . . . . . 8 (𝑗 = 1 → (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑗)) = (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑1)))
2219, 21breq12d 4494 . . . . . . 7 (𝑗 = 1 → (((𝐺𝑗)𝐷(𝐺‘(𝑗 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑗)) ↔ ((𝐺‘1)𝐷(𝐺‘(1 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑1))))
2322imbi2d 328 . . . . . 6 (𝑗 = 1 → ((𝜑 → ((𝐺𝑗)𝐷(𝐺‘(𝑗 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑗))) ↔ (𝜑 → ((𝐺‘1)𝐷(𝐺‘(1 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑1)))))
24 fveq2 5987 . . . . . . . . 9 (𝑗 = 𝑘 → (𝐺𝑗) = (𝐺𝑘))
25 oveq1 6433 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝑗 + 1) = (𝑘 + 1))
2625fveq2d 5991 . . . . . . . . 9 (𝑗 = 𝑘 → (𝐺‘(𝑗 + 1)) = (𝐺‘(𝑘 + 1)))
2724, 26oveq12d 6444 . . . . . . . 8 (𝑗 = 𝑘 → ((𝐺𝑗)𝐷(𝐺‘(𝑗 + 1))) = ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))))
28 oveq2 6434 . . . . . . . . 9 (𝑗 = 𝑘 → (𝐾𝑗) = (𝐾𝑘))
2928oveq2d 6442 . . . . . . . 8 (𝑗 = 𝑘 → (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑗)) = (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)))
3027, 29breq12d 4494 . . . . . . 7 (𝑗 = 𝑘 → (((𝐺𝑗)𝐷(𝐺‘(𝑗 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑗)) ↔ ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘))))
3130imbi2d 328 . . . . . 6 (𝑗 = 𝑘 → ((𝜑 → ((𝐺𝑗)𝐷(𝐺‘(𝑗 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑗))) ↔ (𝜑 → ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)))))
32 fveq2 5987 . . . . . . . . 9 (𝑗 = (𝑘 + 1) → (𝐺𝑗) = (𝐺‘(𝑘 + 1)))
33 oveq1 6433 . . . . . . . . . 10 (𝑗 = (𝑘 + 1) → (𝑗 + 1) = ((𝑘 + 1) + 1))
3433fveq2d 5991 . . . . . . . . 9 (𝑗 = (𝑘 + 1) → (𝐺‘(𝑗 + 1)) = (𝐺‘((𝑘 + 1) + 1)))
3532, 34oveq12d 6444 . . . . . . . 8 (𝑗 = (𝑘 + 1) → ((𝐺𝑗)𝐷(𝐺‘(𝑗 + 1))) = ((𝐺‘(𝑘 + 1))𝐷(𝐺‘((𝑘 + 1) + 1))))
36 oveq2 6434 . . . . . . . . 9 (𝑗 = (𝑘 + 1) → (𝐾𝑗) = (𝐾↑(𝑘 + 1)))
3736oveq2d 6442 . . . . . . . 8 (𝑗 = (𝑘 + 1) → (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑗)) = (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))))
3835, 37breq12d 4494 . . . . . . 7 (𝑗 = (𝑘 + 1) → (((𝐺𝑗)𝐷(𝐺‘(𝑗 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑗)) ↔ ((𝐺‘(𝑘 + 1))𝐷(𝐺‘((𝑘 + 1) + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1)))))
3938imbi2d 328 . . . . . 6 (𝑗 = (𝑘 + 1) → ((𝜑 → ((𝐺𝑗)𝐷(𝐺‘(𝑗 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑗))) ↔ (𝜑 → ((𝐺‘(𝑘 + 1))𝐷(𝐺‘((𝑘 + 1) + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))))))
4012leidd 10343 . . . . . . 7 (𝜑 → (𝐴𝐷(𝐹𝐴)) ≤ (𝐴𝐷(𝐹𝐴)))
414, 5, 6, 7algr0 14999 . . . . . . . 8 (𝜑 → (𝐺‘1) = 𝐴)
42 1nn 10786 . . . . . . . . . 10 1 ∈ ℕ
434, 5, 6, 7, 8algrp1 15001 . . . . . . . . . 10 ((𝜑 ∧ 1 ∈ ℕ) → (𝐺‘(1 + 1)) = (𝐹‘(𝐺‘1)))
4442, 43mpan2 702 . . . . . . . . 9 (𝜑 → (𝐺‘(1 + 1)) = (𝐹‘(𝐺‘1)))
4541fveq2d 5991 . . . . . . . . 9 (𝜑 → (𝐹‘(𝐺‘1)) = (𝐹𝐴))
4644, 45eqtrd 2548 . . . . . . . 8 (𝜑 → (𝐺‘(1 + 1)) = (𝐹𝐴))
4741, 46oveq12d 6444 . . . . . . 7 (𝜑 → ((𝐺‘1)𝐷(𝐺‘(1 + 1))) = (𝐴𝐷(𝐹𝐴)))
4813rpred 11614 . . . . . . . . . . 11 (𝜑𝐾 ∈ ℝ)
4948recnd 9823 . . . . . . . . . 10 (𝜑𝐾 ∈ ℂ)
5049exp1d 12733 . . . . . . . . 9 (𝜑 → (𝐾↑1) = 𝐾)
5150oveq2d 6442 . . . . . . . 8 (𝜑 → (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑1)) = (((𝐴𝐷(𝐹𝐴)) / 𝐾) · 𝐾))
5212recnd 9823 . . . . . . . . 9 (𝜑 → (𝐴𝐷(𝐹𝐴)) ∈ ℂ)
5313rpne0d 11619 . . . . . . . . 9 (𝜑𝐾 ≠ 0)
5452, 49, 53divcan1d 10551 . . . . . . . 8 (𝜑 → (((𝐴𝐷(𝐹𝐴)) / 𝐾) · 𝐾) = (𝐴𝐷(𝐹𝐴)))
5551, 54eqtrd 2548 . . . . . . 7 (𝜑 → (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑1)) = (𝐴𝐷(𝐹𝐴)))
5640, 47, 553brtr4d 4513 . . . . . 6 (𝜑 → ((𝐺‘1)𝐷(𝐺‘(1 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑1)))
579ffvelrnda 6151 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ∈ 𝑋)
58 peano2nn 10787 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
59 ffvelrn 6149 . . . . . . . . . . . . 13 ((𝐺:ℕ⟶𝑋 ∧ (𝑘 + 1) ∈ ℕ) → (𝐺‘(𝑘 + 1)) ∈ 𝑋)
609, 58, 59syl2an 492 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐺‘(𝑘 + 1)) ∈ 𝑋)
6157, 60jca 552 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝐺𝑘) ∈ 𝑋 ∧ (𝐺‘(𝑘 + 1)) ∈ 𝑋))
62 bfp.7 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))
6362ralrimivva 2858 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝑋𝑦𝑋 ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))
6463adantr 479 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ∀𝑥𝑋𝑦𝑋 ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))
65 fveq2 5987 . . . . . . . . . . . . . 14 (𝑥 = (𝐺𝑘) → (𝐹𝑥) = (𝐹‘(𝐺𝑘)))
6665oveq1d 6441 . . . . . . . . . . . . 13 (𝑥 = (𝐺𝑘) → ((𝐹𝑥)𝐷(𝐹𝑦)) = ((𝐹‘(𝐺𝑘))𝐷(𝐹𝑦)))
67 oveq1 6433 . . . . . . . . . . . . . 14 (𝑥 = (𝐺𝑘) → (𝑥𝐷𝑦) = ((𝐺𝑘)𝐷𝑦))
6867oveq2d 6442 . . . . . . . . . . . . 13 (𝑥 = (𝐺𝑘) → (𝐾 · (𝑥𝐷𝑦)) = (𝐾 · ((𝐺𝑘)𝐷𝑦)))
6966, 68breq12d 4494 . . . . . . . . . . . 12 (𝑥 = (𝐺𝑘) → (((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)) ↔ ((𝐹‘(𝐺𝑘))𝐷(𝐹𝑦)) ≤ (𝐾 · ((𝐺𝑘)𝐷𝑦))))
70 fveq2 5987 . . . . . . . . . . . . . 14 (𝑦 = (𝐺‘(𝑘 + 1)) → (𝐹𝑦) = (𝐹‘(𝐺‘(𝑘 + 1))))
7170oveq2d 6442 . . . . . . . . . . . . 13 (𝑦 = (𝐺‘(𝑘 + 1)) → ((𝐹‘(𝐺𝑘))𝐷(𝐹𝑦)) = ((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))))
72 oveq2 6434 . . . . . . . . . . . . . 14 (𝑦 = (𝐺‘(𝑘 + 1)) → ((𝐺𝑘)𝐷𝑦) = ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))))
7372oveq2d 6442 . . . . . . . . . . . . 13 (𝑦 = (𝐺‘(𝑘 + 1)) → (𝐾 · ((𝐺𝑘)𝐷𝑦)) = (𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1)))))
7471, 73breq12d 4494 . . . . . . . . . . . 12 (𝑦 = (𝐺‘(𝑘 + 1)) → (((𝐹‘(𝐺𝑘))𝐷(𝐹𝑦)) ≤ (𝐾 · ((𝐺𝑘)𝐷𝑦)) ↔ ((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ≤ (𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))))))
7569, 74rspc2v 3197 . . . . . . . . . . 11 (((𝐺𝑘) ∈ 𝑋 ∧ (𝐺‘(𝑘 + 1)) ∈ 𝑋) → (∀𝑥𝑋𝑦𝑋 ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)) → ((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ≤ (𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))))))
7661, 64, 75sylc 62 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ≤ (𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1)))))
773adantr 479 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 𝐷 ∈ (Met‘𝑋))
788adantr 479 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 𝐹:𝑋𝑋)
7978, 57ffvelrnd 6152 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝐺𝑘)) ∈ 𝑋)
8078, 60ffvelrnd 6152 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝐺‘(𝑘 + 1))) ∈ 𝑋)
81 metcl 21849 . . . . . . . . . . . 12 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘(𝐺𝑘)) ∈ 𝑋 ∧ (𝐹‘(𝐺‘(𝑘 + 1))) ∈ 𝑋) → ((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ∈ ℝ)
8277, 79, 80, 81syl3anc 1317 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ∈ ℝ)
8348adantr 479 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 𝐾 ∈ ℝ)
84 metcl 21849 . . . . . . . . . . . . 13 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐺𝑘) ∈ 𝑋 ∧ (𝐺‘(𝑘 + 1)) ∈ 𝑋) → ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ∈ ℝ)
8577, 57, 60, 84syl3anc 1317 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ∈ ℝ)
8683, 85remulcld 9825 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1)))) ∈ ℝ)
8714adantr 479 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((𝐴𝐷(𝐹𝐴)) / 𝐾) ∈ ℝ)
8858adantl 480 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
8988nnnn0d 11106 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ0)
9083, 89reexpcld 12755 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐾↑(𝑘 + 1)) ∈ ℝ)
9187, 90remulcld 9825 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))) ∈ ℝ)
92 letr 9881 . . . . . . . . . . 11 ((((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ∈ ℝ ∧ (𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1)))) ∈ ℝ ∧ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))) ∈ ℝ) → ((((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ≤ (𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1)))) ∧ (𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1)))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1)))) → ((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1)))))
9382, 86, 91, 92syl3anc 1317 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ((((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ≤ (𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1)))) ∧ (𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1)))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1)))) → ((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1)))))
9476, 93mpand 706 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1)))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))) → ((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1)))))
95 nnnn0 11054 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
96 reexpcl 12607 . . . . . . . . . . . . 13 ((𝐾 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐾𝑘) ∈ ℝ)
9748, 95, 96syl2an 492 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐾𝑘) ∈ ℝ)
9887, 97remulcld 9825 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)) ∈ ℝ)
9913rpgt0d 11617 . . . . . . . . . . . 12 (𝜑 → 0 < 𝐾)
10099adantr 479 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → 0 < 𝐾)
101 lemul1 10624 . . . . . . . . . . 11 ((((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ∈ ℝ ∧ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)) ∈ ℝ ∧ (𝐾 ∈ ℝ ∧ 0 < 𝐾)) → (((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)) ↔ (((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) · 𝐾) ≤ ((((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)) · 𝐾)))
10285, 98, 83, 100, 101syl112anc 1321 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)) ↔ (((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) · 𝐾) ≤ ((((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)) · 𝐾)))
10385recnd 9823 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ∈ ℂ)
10449adantr 479 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 𝐾 ∈ ℂ)
105103, 104mulcomd 9816 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) · 𝐾) = (𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1)))))
10687recnd 9823 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → ((𝐴𝐷(𝐹𝐴)) / 𝐾) ∈ ℂ)
10797recnd 9823 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝐾𝑘) ∈ ℂ)
108106, 107, 104mulassd 9818 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)) · 𝐾) = (((𝐴𝐷(𝐹𝐴)) / 𝐾) · ((𝐾𝑘) · 𝐾)))
109 expp1 12597 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐾↑(𝑘 + 1)) = ((𝐾𝑘) · 𝐾))
11049, 95, 109syl2an 492 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝐾↑(𝑘 + 1)) = ((𝐾𝑘) · 𝐾))
111110oveq2d 6442 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))) = (((𝐴𝐷(𝐹𝐴)) / 𝐾) · ((𝐾𝑘) · 𝐾)))
112108, 111eqtr4d 2551 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)) · 𝐾) = (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))))
113105, 112breq12d 4494 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ((((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) · 𝐾) ≤ ((((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)) · 𝐾) ↔ (𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1)))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1)))))
114102, 113bitrd 266 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)) ↔ (𝐾 · ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1)))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1)))))
1154, 5, 6, 7, 8algrp1 15001 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝐺‘(𝑘 + 1)) = (𝐹‘(𝐺𝑘)))
1164, 5, 6, 7, 8algrp1 15001 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 + 1) ∈ ℕ) → (𝐺‘((𝑘 + 1) + 1)) = (𝐹‘(𝐺‘(𝑘 + 1))))
11758, 116sylan2 489 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝐺‘((𝑘 + 1) + 1)) = (𝐹‘(𝐺‘(𝑘 + 1))))
118115, 117oveq12d 6444 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ((𝐺‘(𝑘 + 1))𝐷(𝐺‘((𝑘 + 1) + 1))) = ((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))))
119118breq1d 4491 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (((𝐺‘(𝑘 + 1))𝐷(𝐺‘((𝑘 + 1) + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))) ↔ ((𝐹‘(𝐺𝑘))𝐷(𝐹‘(𝐺‘(𝑘 + 1)))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1)))))
12094, 114, 1193imtr4d 281 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)) → ((𝐺‘(𝑘 + 1))𝐷(𝐺‘((𝑘 + 1) + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1)))))
121120expcom 449 . . . . . . 7 (𝑘 ∈ ℕ → (𝜑 → (((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)) → ((𝐺‘(𝑘 + 1))𝐷(𝐺‘((𝑘 + 1) + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))))))
122121a2d 29 . . . . . 6 (𝑘 ∈ ℕ → ((𝜑 → ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘))) → (𝜑 → ((𝐺‘(𝑘 + 1))𝐷(𝐺‘((𝑘 + 1) + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾↑(𝑘 + 1))))))
12323, 31, 39, 31, 56, 122nnind 10793 . . . . 5 (𝑘 ∈ ℕ → (𝜑 → ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘))))
124123impcom 444 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((𝐺𝑘)𝐷(𝐺‘(𝑘 + 1))) ≤ (((𝐴𝐷(𝐹𝐴)) / 𝐾) · (𝐾𝑘)))
1253, 9, 14, 13, 15, 124geomcau 32615 . . 3 (𝜑𝐺 ∈ (Cau‘𝐷))
126 bfp.8 . . . 4 𝐽 = (MetOpen‘𝐷)
127126cmetcau 22759 . . 3 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐺 ∈ (Cau‘𝐷)) → 𝐺 ∈ dom (⇝𝑡𝐽))
1281, 125, 127syl2anc 690 . 2 (𝜑𝐺 ∈ dom (⇝𝑡𝐽))
129 metxmet 21851 . . . 4 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
130126methaus 22037 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Haus)
1313, 129, 1303syl 18 . . 3 (𝜑𝐽 ∈ Haus)
132 lmfun 20898 . . 3 (𝐽 ∈ Haus → Fun (⇝𝑡𝐽))
133 funfvbrb 6122 . . 3 (Fun (⇝𝑡𝐽) → (𝐺 ∈ dom (⇝𝑡𝐽) ↔ 𝐺(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝐺)))
134131, 132, 1333syl 18 . 2 (𝜑 → (𝐺 ∈ dom (⇝𝑡𝐽) ↔ 𝐺(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝐺)))
135128, 134mpbid 220 1 (𝜑𝐺(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1938  wne 2684  wral 2800  c0 3777  {csn 4028   class class class wbr 4481   × cxp 4930  dom cdm 4932  ccom 4936  Fun wfun 5683  wf 5685  cfv 5689  (class class class)co 6426  1st c1st 6932  cc 9689  cr 9690  0cc0 9691  1c1 9692   + caddc 9694   · cmul 9696   < clt 9829  cle 9830   / cdiv 10433  cn 10775  0cn0 11047  +crp 11574  seqcseq 12531  cexp 12590  ∞Metcxmt 19456  Metcme 19457  MetOpencmopn 19461  𝑡clm 20743  Hauscha 20825  Caucca 22723  CMetcms 22724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-rep 4597  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6723  ax-inf2 8297  ax-cnex 9747  ax-resscn 9748  ax-1cn 9749  ax-icn 9750  ax-addcl 9751  ax-addrcl 9752  ax-mulcl 9753  ax-mulrcl 9754  ax-mulcom 9755  ax-addass 9756  ax-mulass 9757  ax-distr 9758  ax-i2m1 9759  ax-1ne0 9760  ax-1rid 9761  ax-rnegex 9762  ax-rrecex 9763  ax-cnre 9764  ax-pre-lttri 9765  ax-pre-lttrn 9766  ax-pre-ltadd 9767  ax-pre-mulgt0 9768  ax-pre-sup 9769
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-nel 2687  df-ral 2805  df-rex 2806  df-reu 2807  df-rmo 2808  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-pss 3460  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-tp 4033  df-op 4035  df-uni 4271  df-int 4309  df-iun 4355  df-br 4482  df-opab 4542  df-mpt 4543  df-tr 4579  df-eprel 4843  df-id 4847  df-po 4853  df-so 4854  df-fr 4891  df-se 4892  df-we 4893  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-pred 5487  df-ord 5533  df-on 5534  df-lim 5535  df-suc 5536  df-iota 5653  df-fun 5691  df-fn 5692  df-f 5693  df-f1 5694  df-fo 5695  df-f1o 5696  df-fv 5697  df-isom 5698  df-riota 6388  df-ov 6429  df-oprab 6430  df-mpt2 6431  df-om 6834  df-1st 6934  df-2nd 6935  df-wrecs 7169  df-recs 7231  df-rdg 7269  df-1o 7323  df-oadd 7327  df-er 7505  df-map 7622  df-pm 7623  df-en 7718  df-dom 7719  df-sdom 7720  df-fin 7721  df-sup 8107  df-inf 8108  df-oi 8174  df-card 8524  df-pnf 9831  df-mnf 9832  df-xr 9833  df-ltxr 9834  df-le 9835  df-sub 10019  df-neg 10020  df-div 10434  df-nn 10776  df-2 10834  df-3 10835  df-n0 11048  df-z 11119  df-uz 11428  df-q 11531  df-rp 11575  df-xneg 11688  df-xadd 11689  df-xmul 11690  df-ico 11921  df-icc 11922  df-fz 12066  df-fzo 12203  df-fl 12323  df-seq 12532  df-exp 12591  df-hash 12848  df-cj 13546  df-re 13547  df-im 13548  df-sqrt 13682  df-abs 13683  df-clim 13933  df-rlim 13934  df-sum 14134  df-rest 15790  df-topgen 15811  df-psmet 19463  df-xmet 19464  df-met 19465  df-bl 19466  df-mopn 19467  df-fbas 19468  df-fg 19469  df-top 20424  df-bases 20425  df-topon 20426  df-ntr 20537  df-nei 20615  df-lm 20746  df-haus 20832  df-fil 21363  df-fm 21455  df-flim 21456  df-flf 21457  df-cfil 22725  df-cau 22726  df-cmet 22727
This theorem is referenced by:  bfplem2  32682
  Copyright terms: Public domain W3C validator