MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reeff1o Structured version   Visualization version   GIF version

Theorem reeff1o 24964
Description: The real exponential function is one-to-one onto. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 10-Nov-2013.)
Assertion
Ref Expression
reeff1o (exp ↾ ℝ):ℝ–1-1-onto→ℝ+

Proof of Theorem reeff1o
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reeff1 15463 . 2 (exp ↾ ℝ):ℝ–1-1→ℝ+
2 f1f 6569 . . . 4 ((exp ↾ ℝ):ℝ–1-1→ℝ+ → (exp ↾ ℝ):ℝ⟶ℝ+)
3 ffn 6508 . . . 4 ((exp ↾ ℝ):ℝ⟶ℝ+ → (exp ↾ ℝ) Fn ℝ)
41, 2, 3mp2b 10 . . 3 (exp ↾ ℝ) Fn ℝ
5 frn 6514 . . . . 5 ((exp ↾ ℝ):ℝ⟶ℝ+ → ran (exp ↾ ℝ) ⊆ ℝ+)
61, 2, 5mp2b 10 . . . 4 ran (exp ↾ ℝ) ⊆ ℝ+
7 elrp 12381 . . . . . . . . . . 11 (𝑧 ∈ ℝ+ ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧))
8 reclt1 11524 . . . . . . . . . . 11 ((𝑧 ∈ ℝ ∧ 0 < 𝑧) → (𝑧 < 1 ↔ 1 < (1 / 𝑧)))
97, 8sylbi 218 . . . . . . . . . 10 (𝑧 ∈ ℝ+ → (𝑧 < 1 ↔ 1 < (1 / 𝑧)))
10 rpre 12387 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℝ+𝑧 ∈ ℝ)
11 rpne0 12395 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℝ+𝑧 ≠ 0)
1210, 11rereccld 11456 . . . . . . . . . . . . . 14 (𝑧 ∈ ℝ+ → (1 / 𝑧) ∈ ℝ)
13 reeff1olem 24963 . . . . . . . . . . . . . 14 (((1 / 𝑧) ∈ ℝ ∧ 1 < (1 / 𝑧)) → ∃𝑦 ∈ ℝ (exp‘𝑦) = (1 / 𝑧))
1412, 13sylan 580 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ+ ∧ 1 < (1 / 𝑧)) → ∃𝑦 ∈ ℝ (exp‘𝑦) = (1 / 𝑧))
15 eqcom 2828 . . . . . . . . . . . . . . . . 17 ((1 / 𝑧) = (exp‘𝑦) ↔ (exp‘𝑦) = (1 / 𝑧))
16 rpcnne0 12397 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℝ+ → (𝑧 ∈ ℂ ∧ 𝑧 ≠ 0))
17 recn 10616 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
18 efcl 15426 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℂ → (exp‘𝑦) ∈ ℂ)
1917, 18syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℝ → (exp‘𝑦) ∈ ℂ)
20 efne0 15440 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℂ → (exp‘𝑦) ≠ 0)
2117, 20syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℝ → (exp‘𝑦) ≠ 0)
2219, 21jca 512 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℝ → ((exp‘𝑦) ∈ ℂ ∧ (exp‘𝑦) ≠ 0))
23 rec11r 11328 . . . . . . . . . . . . . . . . . . 19 (((𝑧 ∈ ℂ ∧ 𝑧 ≠ 0) ∧ ((exp‘𝑦) ∈ ℂ ∧ (exp‘𝑦) ≠ 0)) → ((1 / 𝑧) = (exp‘𝑦) ↔ (1 / (exp‘𝑦)) = 𝑧))
2416, 22, 23syl2an 595 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℝ+𝑦 ∈ ℝ) → ((1 / 𝑧) = (exp‘𝑦) ↔ (1 / (exp‘𝑦)) = 𝑧))
25 efcan 15439 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ℂ → ((exp‘𝑦) · (exp‘-𝑦)) = 1)
2625eqcomd 2827 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℂ → 1 = ((exp‘𝑦) · (exp‘-𝑦)))
27 negcl 10875 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℂ → -𝑦 ∈ ℂ)
28 efcl 15426 . . . . . . . . . . . . . . . . . . . . . . . 24 (-𝑦 ∈ ℂ → (exp‘-𝑦) ∈ ℂ)
2927, 28syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ℂ → (exp‘-𝑦) ∈ ℂ)
30 ax-1cn 10584 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ ℂ
31 divmul2 11291 . . . . . . . . . . . . . . . . . . . . . . . 24 ((1 ∈ ℂ ∧ (exp‘-𝑦) ∈ ℂ ∧ ((exp‘𝑦) ∈ ℂ ∧ (exp‘𝑦) ≠ 0)) → ((1 / (exp‘𝑦)) = (exp‘-𝑦) ↔ 1 = ((exp‘𝑦) · (exp‘-𝑦))))
3230, 31mp3an1 1439 . . . . . . . . . . . . . . . . . . . . . . 23 (((exp‘-𝑦) ∈ ℂ ∧ ((exp‘𝑦) ∈ ℂ ∧ (exp‘𝑦) ≠ 0)) → ((1 / (exp‘𝑦)) = (exp‘-𝑦) ↔ 1 = ((exp‘𝑦) · (exp‘-𝑦))))
3329, 18, 20, 32syl12anc 832 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℂ → ((1 / (exp‘𝑦)) = (exp‘-𝑦) ↔ 1 = ((exp‘𝑦) · (exp‘-𝑦))))
3426, 33mpbird 258 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℂ → (1 / (exp‘𝑦)) = (exp‘-𝑦))
3517, 34syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℝ → (1 / (exp‘𝑦)) = (exp‘-𝑦))
3635eqeq1d 2823 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℝ → ((1 / (exp‘𝑦)) = 𝑧 ↔ (exp‘-𝑦) = 𝑧))
3736adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℝ+𝑦 ∈ ℝ) → ((1 / (exp‘𝑦)) = 𝑧 ↔ (exp‘-𝑦) = 𝑧))
3824, 37bitrd 280 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℝ+𝑦 ∈ ℝ) → ((1 / 𝑧) = (exp‘𝑦) ↔ (exp‘-𝑦) = 𝑧))
3915, 38syl5bbr 286 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℝ+𝑦 ∈ ℝ) → ((exp‘𝑦) = (1 / 𝑧) ↔ (exp‘-𝑦) = 𝑧))
4039biimpd 230 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℝ+𝑦 ∈ ℝ) → ((exp‘𝑦) = (1 / 𝑧) → (exp‘-𝑦) = 𝑧))
4140reximdva 3274 . . . . . . . . . . . . . 14 (𝑧 ∈ ℝ+ → (∃𝑦 ∈ ℝ (exp‘𝑦) = (1 / 𝑧) → ∃𝑦 ∈ ℝ (exp‘-𝑦) = 𝑧))
4241adantr 481 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ+ ∧ 1 < (1 / 𝑧)) → (∃𝑦 ∈ ℝ (exp‘𝑦) = (1 / 𝑧) → ∃𝑦 ∈ ℝ (exp‘-𝑦) = 𝑧))
4314, 42mpd 15 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ+ ∧ 1 < (1 / 𝑧)) → ∃𝑦 ∈ ℝ (exp‘-𝑦) = 𝑧)
44 renegcl 10938 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → -𝑦 ∈ ℝ)
45 infm3lem 11588 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → ∃𝑦 ∈ ℝ 𝑥 = -𝑦)
46 fveqeq2 6673 . . . . . . . . . . . . 13 (𝑥 = -𝑦 → ((exp‘𝑥) = 𝑧 ↔ (exp‘-𝑦) = 𝑧))
4744, 45, 46rexxfr 5308 . . . . . . . . . . . 12 (∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧 ↔ ∃𝑦 ∈ ℝ (exp‘-𝑦) = 𝑧)
4843, 47sylibr 235 . . . . . . . . . . 11 ((𝑧 ∈ ℝ+ ∧ 1 < (1 / 𝑧)) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
4948ex 413 . . . . . . . . . 10 (𝑧 ∈ ℝ+ → (1 < (1 / 𝑧) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧))
509, 49sylbid 241 . . . . . . . . 9 (𝑧 ∈ ℝ+ → (𝑧 < 1 → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧))
5150imp 407 . . . . . . . 8 ((𝑧 ∈ ℝ+𝑧 < 1) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
52 ef0 15434 . . . . . . . . . . 11 (exp‘0) = 1
5352eqeq2i 2834 . . . . . . . . . 10 (𝑧 = (exp‘0) ↔ 𝑧 = 1)
54 0re 10632 . . . . . . . . . . . 12 0 ∈ ℝ
55 fveqeq2 6673 . . . . . . . . . . . . 13 (𝑥 = 0 → ((exp‘𝑥) = 𝑧 ↔ (exp‘0) = 𝑧))
5655rspcev 3622 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ (exp‘0) = 𝑧) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
5754, 56mpan 686 . . . . . . . . . . 11 ((exp‘0) = 𝑧 → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
5857eqcoms 2829 . . . . . . . . . 10 (𝑧 = (exp‘0) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
5953, 58sylbir 236 . . . . . . . . 9 (𝑧 = 1 → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
6059adantl 482 . . . . . . . 8 ((𝑧 ∈ ℝ+𝑧 = 1) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
61 reeff1olem 24963 . . . . . . . . 9 ((𝑧 ∈ ℝ ∧ 1 < 𝑧) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
6210, 61sylan 580 . . . . . . . 8 ((𝑧 ∈ ℝ+ ∧ 1 < 𝑧) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
63 1re 10630 . . . . . . . . 9 1 ∈ ℝ
64 lttri4 10714 . . . . . . . . 9 ((𝑧 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑧 < 1 ∨ 𝑧 = 1 ∨ 1 < 𝑧))
6510, 63, 64sylancl 586 . . . . . . . 8 (𝑧 ∈ ℝ+ → (𝑧 < 1 ∨ 𝑧 = 1 ∨ 1 < 𝑧))
6651, 60, 62, 65mpjao3dan 1423 . . . . . . 7 (𝑧 ∈ ℝ+ → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
67 fvres 6683 . . . . . . . . 9 (𝑥 ∈ ℝ → ((exp ↾ ℝ)‘𝑥) = (exp‘𝑥))
6867eqeq1d 2823 . . . . . . . 8 (𝑥 ∈ ℝ → (((exp ↾ ℝ)‘𝑥) = 𝑧 ↔ (exp‘𝑥) = 𝑧))
6968rexbiia 3246 . . . . . . 7 (∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧 ↔ ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
7066, 69sylibr 235 . . . . . 6 (𝑧 ∈ ℝ+ → ∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧)
71 fvelrnb 6720 . . . . . . 7 ((exp ↾ ℝ) Fn ℝ → (𝑧 ∈ ran (exp ↾ ℝ) ↔ ∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧))
724, 71ax-mp 5 . . . . . 6 (𝑧 ∈ ran (exp ↾ ℝ) ↔ ∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧)
7370, 72sylibr 235 . . . . 5 (𝑧 ∈ ℝ+𝑧 ∈ ran (exp ↾ ℝ))
7473ssriv 3970 . . . 4 + ⊆ ran (exp ↾ ℝ)
756, 74eqssi 3982 . . 3 ran (exp ↾ ℝ) = ℝ+
76 df-fo 6355 . . 3 ((exp ↾ ℝ):ℝ–onto→ℝ+ ↔ ((exp ↾ ℝ) Fn ℝ ∧ ran (exp ↾ ℝ) = ℝ+))
774, 75, 76mpbir2an 707 . 2 (exp ↾ ℝ):ℝ–onto→ℝ+
78 df-f1o 6356 . 2 ((exp ↾ ℝ):ℝ–1-1-onto→ℝ+ ↔ ((exp ↾ ℝ):ℝ–1-1→ℝ+ ∧ (exp ↾ ℝ):ℝ–onto→ℝ+))
791, 77, 78mpbir2an 707 1 (exp ↾ ℝ):ℝ–1-1-onto→ℝ+
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3o 1078   = wceq 1528  wcel 2105  wne 3016  wrex 3139  wss 3935   class class class wbr 5058  ran crn 5550  cres 5551   Fn wfn 6344  wf 6345  1-1wf1 6346  ontowfo 6347  1-1-ontowf1o 6348  cfv 6349  (class class class)co 7145  cc 10524  cr 10525  0cc0 10526  1c1 10527   · cmul 10531   < clt 10664  -cneg 10860   / cdiv 11286  +crp 12379  expce 15405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450  ax-inf2 9093  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4833  df-int 4870  df-iun 4914  df-iin 4915  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7569  df-1st 7680  df-2nd 7681  df-supp 7822  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-2o 8094  df-oadd 8097  df-er 8279  df-map 8398  df-pm 8399  df-ixp 8451  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-fsupp 8823  df-fi 8864  df-sup 8895  df-inf 8896  df-oi 8963  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-4 11691  df-5 11692  df-6 11693  df-7 11694  df-8 11695  df-9 11696  df-n0 11887  df-z 11971  df-dec 12088  df-uz 12233  df-q 12338  df-rp 12380  df-xneg 12497  df-xadd 12498  df-xmul 12499  df-ioo 12732  df-ico 12734  df-icc 12735  df-fz 12883  df-fzo 13024  df-fl 13152  df-seq 13360  df-exp 13420  df-fac 13624  df-bc 13653  df-hash 13681  df-shft 14416  df-cj 14448  df-re 14449  df-im 14450  df-sqrt 14584  df-abs 14585  df-limsup 14818  df-clim 14835  df-rlim 14836  df-sum 15033  df-ef 15411  df-struct 16475  df-ndx 16476  df-slot 16477  df-base 16479  df-sets 16480  df-ress 16481  df-plusg 16568  df-mulr 16569  df-starv 16570  df-sca 16571  df-vsca 16572  df-ip 16573  df-tset 16574  df-ple 16575  df-ds 16577  df-unif 16578  df-hom 16579  df-cco 16580  df-rest 16686  df-topn 16687  df-0g 16705  df-gsum 16706  df-topgen 16707  df-pt 16708  df-prds 16711  df-xrs 16765  df-qtop 16770  df-imas 16771  df-xps 16773  df-mre 16847  df-mrc 16848  df-acs 16850  df-mgm 17842  df-sgrp 17891  df-mnd 17902  df-submnd 17947  df-mulg 18165  df-cntz 18387  df-cmn 18839  df-psmet 20467  df-xmet 20468  df-met 20469  df-bl 20470  df-mopn 20471  df-fbas 20472  df-fg 20473  df-cnfld 20476  df-top 21432  df-topon 21449  df-topsp 21471  df-bases 21484  df-cld 21557  df-ntr 21558  df-cls 21559  df-nei 21636  df-lp 21674  df-perf 21675  df-cn 21765  df-cnp 21766  df-haus 21853  df-tx 22100  df-hmeo 22293  df-fil 22384  df-fm 22476  df-flim 22477  df-flf 22478  df-xms 22859  df-ms 22860  df-tms 22861  df-cncf 23415  df-limc 24393  df-dv 24394
This theorem is referenced by:  reefiso  24965  efcvx  24966  reefgim  24967  eff1olem  25059  dfrelog  25076  relogf1o  25077  dvrelog  25147
  Copyright terms: Public domain W3C validator