MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reeff1o Structured version   Visualization version   GIF version

Theorem reeff1o 25035
Description: The real exponential function is one-to-one onto. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 10-Nov-2013.)
Assertion
Ref Expression
reeff1o (exp ↾ ℝ):ℝ–1-1-onto→ℝ+

Proof of Theorem reeff1o
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reeff1 15473 . 2 (exp ↾ ℝ):ℝ–1-1→ℝ+
2 f1f 6575 . . . 4 ((exp ↾ ℝ):ℝ–1-1→ℝ+ → (exp ↾ ℝ):ℝ⟶ℝ+)
3 ffn 6514 . . . 4 ((exp ↾ ℝ):ℝ⟶ℝ+ → (exp ↾ ℝ) Fn ℝ)
41, 2, 3mp2b 10 . . 3 (exp ↾ ℝ) Fn ℝ
5 frn 6520 . . . . 5 ((exp ↾ ℝ):ℝ⟶ℝ+ → ran (exp ↾ ℝ) ⊆ ℝ+)
61, 2, 5mp2b 10 . . . 4 ran (exp ↾ ℝ) ⊆ ℝ+
7 elrp 12392 . . . . . . . . . . 11 (𝑧 ∈ ℝ+ ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧))
8 reclt1 11535 . . . . . . . . . . 11 ((𝑧 ∈ ℝ ∧ 0 < 𝑧) → (𝑧 < 1 ↔ 1 < (1 / 𝑧)))
97, 8sylbi 219 . . . . . . . . . 10 (𝑧 ∈ ℝ+ → (𝑧 < 1 ↔ 1 < (1 / 𝑧)))
10 rpre 12398 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℝ+𝑧 ∈ ℝ)
11 rpne0 12406 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℝ+𝑧 ≠ 0)
1210, 11rereccld 11467 . . . . . . . . . . . . . 14 (𝑧 ∈ ℝ+ → (1 / 𝑧) ∈ ℝ)
13 reeff1olem 25034 . . . . . . . . . . . . . 14 (((1 / 𝑧) ∈ ℝ ∧ 1 < (1 / 𝑧)) → ∃𝑦 ∈ ℝ (exp‘𝑦) = (1 / 𝑧))
1412, 13sylan 582 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ+ ∧ 1 < (1 / 𝑧)) → ∃𝑦 ∈ ℝ (exp‘𝑦) = (1 / 𝑧))
15 eqcom 2828 . . . . . . . . . . . . . . . . 17 ((1 / 𝑧) = (exp‘𝑦) ↔ (exp‘𝑦) = (1 / 𝑧))
16 rpcnne0 12408 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℝ+ → (𝑧 ∈ ℂ ∧ 𝑧 ≠ 0))
17 recn 10627 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
18 efcl 15436 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℂ → (exp‘𝑦) ∈ ℂ)
1917, 18syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℝ → (exp‘𝑦) ∈ ℂ)
20 efne0 15450 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℂ → (exp‘𝑦) ≠ 0)
2117, 20syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℝ → (exp‘𝑦) ≠ 0)
2219, 21jca 514 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℝ → ((exp‘𝑦) ∈ ℂ ∧ (exp‘𝑦) ≠ 0))
23 rec11r 11339 . . . . . . . . . . . . . . . . . . 19 (((𝑧 ∈ ℂ ∧ 𝑧 ≠ 0) ∧ ((exp‘𝑦) ∈ ℂ ∧ (exp‘𝑦) ≠ 0)) → ((1 / 𝑧) = (exp‘𝑦) ↔ (1 / (exp‘𝑦)) = 𝑧))
2416, 22, 23syl2an 597 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℝ+𝑦 ∈ ℝ) → ((1 / 𝑧) = (exp‘𝑦) ↔ (1 / (exp‘𝑦)) = 𝑧))
25 efcan 15449 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ℂ → ((exp‘𝑦) · (exp‘-𝑦)) = 1)
2625eqcomd 2827 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℂ → 1 = ((exp‘𝑦) · (exp‘-𝑦)))
27 negcl 10886 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℂ → -𝑦 ∈ ℂ)
28 efcl 15436 . . . . . . . . . . . . . . . . . . . . . . . 24 (-𝑦 ∈ ℂ → (exp‘-𝑦) ∈ ℂ)
2927, 28syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ℂ → (exp‘-𝑦) ∈ ℂ)
30 ax-1cn 10595 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ ℂ
31 divmul2 11302 . . . . . . . . . . . . . . . . . . . . . . . 24 ((1 ∈ ℂ ∧ (exp‘-𝑦) ∈ ℂ ∧ ((exp‘𝑦) ∈ ℂ ∧ (exp‘𝑦) ≠ 0)) → ((1 / (exp‘𝑦)) = (exp‘-𝑦) ↔ 1 = ((exp‘𝑦) · (exp‘-𝑦))))
3230, 31mp3an1 1444 . . . . . . . . . . . . . . . . . . . . . . 23 (((exp‘-𝑦) ∈ ℂ ∧ ((exp‘𝑦) ∈ ℂ ∧ (exp‘𝑦) ≠ 0)) → ((1 / (exp‘𝑦)) = (exp‘-𝑦) ↔ 1 = ((exp‘𝑦) · (exp‘-𝑦))))
3329, 18, 20, 32syl12anc 834 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℂ → ((1 / (exp‘𝑦)) = (exp‘-𝑦) ↔ 1 = ((exp‘𝑦) · (exp‘-𝑦))))
3426, 33mpbird 259 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℂ → (1 / (exp‘𝑦)) = (exp‘-𝑦))
3517, 34syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℝ → (1 / (exp‘𝑦)) = (exp‘-𝑦))
3635eqeq1d 2823 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℝ → ((1 / (exp‘𝑦)) = 𝑧 ↔ (exp‘-𝑦) = 𝑧))
3736adantl 484 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℝ+𝑦 ∈ ℝ) → ((1 / (exp‘𝑦)) = 𝑧 ↔ (exp‘-𝑦) = 𝑧))
3824, 37bitrd 281 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℝ+𝑦 ∈ ℝ) → ((1 / 𝑧) = (exp‘𝑦) ↔ (exp‘-𝑦) = 𝑧))
3915, 38syl5bbr 287 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℝ+𝑦 ∈ ℝ) → ((exp‘𝑦) = (1 / 𝑧) ↔ (exp‘-𝑦) = 𝑧))
4039biimpd 231 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℝ+𝑦 ∈ ℝ) → ((exp‘𝑦) = (1 / 𝑧) → (exp‘-𝑦) = 𝑧))
4140reximdva 3274 . . . . . . . . . . . . . 14 (𝑧 ∈ ℝ+ → (∃𝑦 ∈ ℝ (exp‘𝑦) = (1 / 𝑧) → ∃𝑦 ∈ ℝ (exp‘-𝑦) = 𝑧))
4241adantr 483 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ+ ∧ 1 < (1 / 𝑧)) → (∃𝑦 ∈ ℝ (exp‘𝑦) = (1 / 𝑧) → ∃𝑦 ∈ ℝ (exp‘-𝑦) = 𝑧))
4314, 42mpd 15 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ+ ∧ 1 < (1 / 𝑧)) → ∃𝑦 ∈ ℝ (exp‘-𝑦) = 𝑧)
44 renegcl 10949 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → -𝑦 ∈ ℝ)
45 infm3lem 11599 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → ∃𝑦 ∈ ℝ 𝑥 = -𝑦)
46 fveqeq2 6679 . . . . . . . . . . . . 13 (𝑥 = -𝑦 → ((exp‘𝑥) = 𝑧 ↔ (exp‘-𝑦) = 𝑧))
4744, 45, 46rexxfr 5317 . . . . . . . . . . . 12 (∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧 ↔ ∃𝑦 ∈ ℝ (exp‘-𝑦) = 𝑧)
4843, 47sylibr 236 . . . . . . . . . . 11 ((𝑧 ∈ ℝ+ ∧ 1 < (1 / 𝑧)) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
4948ex 415 . . . . . . . . . 10 (𝑧 ∈ ℝ+ → (1 < (1 / 𝑧) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧))
509, 49sylbid 242 . . . . . . . . 9 (𝑧 ∈ ℝ+ → (𝑧 < 1 → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧))
5150imp 409 . . . . . . . 8 ((𝑧 ∈ ℝ+𝑧 < 1) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
52 ef0 15444 . . . . . . . . . . 11 (exp‘0) = 1
5352eqeq2i 2834 . . . . . . . . . 10 (𝑧 = (exp‘0) ↔ 𝑧 = 1)
54 0re 10643 . . . . . . . . . . . 12 0 ∈ ℝ
55 fveqeq2 6679 . . . . . . . . . . . . 13 (𝑥 = 0 → ((exp‘𝑥) = 𝑧 ↔ (exp‘0) = 𝑧))
5655rspcev 3623 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ (exp‘0) = 𝑧) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
5754, 56mpan 688 . . . . . . . . . . 11 ((exp‘0) = 𝑧 → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
5857eqcoms 2829 . . . . . . . . . 10 (𝑧 = (exp‘0) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
5953, 58sylbir 237 . . . . . . . . 9 (𝑧 = 1 → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
6059adantl 484 . . . . . . . 8 ((𝑧 ∈ ℝ+𝑧 = 1) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
61 reeff1olem 25034 . . . . . . . . 9 ((𝑧 ∈ ℝ ∧ 1 < 𝑧) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
6210, 61sylan 582 . . . . . . . 8 ((𝑧 ∈ ℝ+ ∧ 1 < 𝑧) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
63 1re 10641 . . . . . . . . 9 1 ∈ ℝ
64 lttri4 10725 . . . . . . . . 9 ((𝑧 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑧 < 1 ∨ 𝑧 = 1 ∨ 1 < 𝑧))
6510, 63, 64sylancl 588 . . . . . . . 8 (𝑧 ∈ ℝ+ → (𝑧 < 1 ∨ 𝑧 = 1 ∨ 1 < 𝑧))
6651, 60, 62, 65mpjao3dan 1427 . . . . . . 7 (𝑧 ∈ ℝ+ → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
67 fvres 6689 . . . . . . . . 9 (𝑥 ∈ ℝ → ((exp ↾ ℝ)‘𝑥) = (exp‘𝑥))
6867eqeq1d 2823 . . . . . . . 8 (𝑥 ∈ ℝ → (((exp ↾ ℝ)‘𝑥) = 𝑧 ↔ (exp‘𝑥) = 𝑧))
6968rexbiia 3246 . . . . . . 7 (∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧 ↔ ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑧)
7066, 69sylibr 236 . . . . . 6 (𝑧 ∈ ℝ+ → ∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧)
71 fvelrnb 6726 . . . . . . 7 ((exp ↾ ℝ) Fn ℝ → (𝑧 ∈ ran (exp ↾ ℝ) ↔ ∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧))
724, 71ax-mp 5 . . . . . 6 (𝑧 ∈ ran (exp ↾ ℝ) ↔ ∃𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) = 𝑧)
7370, 72sylibr 236 . . . . 5 (𝑧 ∈ ℝ+𝑧 ∈ ran (exp ↾ ℝ))
7473ssriv 3971 . . . 4 + ⊆ ran (exp ↾ ℝ)
756, 74eqssi 3983 . . 3 ran (exp ↾ ℝ) = ℝ+
76 df-fo 6361 . . 3 ((exp ↾ ℝ):ℝ–onto→ℝ+ ↔ ((exp ↾ ℝ) Fn ℝ ∧ ran (exp ↾ ℝ) = ℝ+))
774, 75, 76mpbir2an 709 . 2 (exp ↾ ℝ):ℝ–onto→ℝ+
78 df-f1o 6362 . 2 ((exp ↾ ℝ):ℝ–1-1-onto→ℝ+ ↔ ((exp ↾ ℝ):ℝ–1-1→ℝ+ ∧ (exp ↾ ℝ):ℝ–onto→ℝ+))
791, 77, 78mpbir2an 709 1 (exp ↾ ℝ):ℝ–1-1-onto→ℝ+
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3o 1082   = wceq 1537  wcel 2114  wne 3016  wrex 3139  wss 3936   class class class wbr 5066  ran crn 5556  cres 5557   Fn wfn 6350  wf 6351  1-1wf1 6352  ontowfo 6353  1-1-ontowf1o 6354  cfv 6355  (class class class)co 7156  cc 10535  cr 10536  0cc0 10537  1c1 10538   · cmul 10542   < clt 10675  -cneg 10871   / cdiv 11297  +crp 12390  expce 15415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-seq 13371  df-exp 13431  df-fac 13635  df-bc 13664  df-hash 13692  df-shft 14426  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846  df-sum 15043  df-ef 15421  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-limc 24464  df-dv 24465
This theorem is referenced by:  reefiso  25036  efcvx  25037  reefgim  25038  eff1olem  25132  dfrelog  25149  relogf1o  25150  dvrelog  25220
  Copyright terms: Public domain W3C validator