MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimcnp2 Structured version   Visualization version   GIF version

Theorem rlimcnp2 25472
Description: Relate a limit of a real-valued sequence at infinity to the continuity of the function 𝑆(𝑦) = 𝑅(1 / 𝑦) at zero. (Contributed by Mario Carneiro, 1-Mar-2015.)
Hypotheses
Ref Expression
rlimcnp2.a (𝜑𝐴 ⊆ (0[,)+∞))
rlimcnp2.0 (𝜑 → 0 ∈ 𝐴)
rlimcnp2.b (𝜑𝐵 ⊆ ℝ)
rlimcnp2.c (𝜑𝐶 ∈ ℂ)
rlimcnp2.r ((𝜑𝑦𝐵) → 𝑆 ∈ ℂ)
rlimcnp2.d ((𝜑𝑦 ∈ ℝ+) → (𝑦𝐵 ↔ (1 / 𝑦) ∈ 𝐴))
rlimcnp2.s (𝑦 = (1 / 𝑥) → 𝑆 = 𝑅)
rlimcnp2.j 𝐽 = (TopOpen‘ℂfld)
rlimcnp2.k 𝐾 = (𝐽t 𝐴)
Assertion
Ref Expression
rlimcnp2 (𝜑 → ((𝑦𝐵𝑆) ⇝𝑟 𝐶 ↔ (𝑥𝐴 ↦ if(𝑥 = 0, 𝐶, 𝑅)) ∈ ((𝐾 CnP 𝐽)‘0)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝜑,𝑥,𝑦   𝑦,𝑅   𝑥,𝑆
Allowed substitution hints:   𝑅(𝑥)   𝑆(𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem rlimcnp2
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 4204 . . . . . . . 8 (𝐵 ∩ (1[,)+∞)) ⊆ 𝐵
2 resmpt 5899 . . . . . . . 8 ((𝐵 ∩ (1[,)+∞)) ⊆ 𝐵 → ((𝑦𝐵𝑆) ↾ (𝐵 ∩ (1[,)+∞))) = (𝑦 ∈ (𝐵 ∩ (1[,)+∞)) ↦ 𝑆))
31, 2mp1i 13 . . . . . . 7 (𝜑 → ((𝑦𝐵𝑆) ↾ (𝐵 ∩ (1[,)+∞))) = (𝑦 ∈ (𝐵 ∩ (1[,)+∞)) ↦ 𝑆))
4 0xr 10677 . . . . . . . . . . 11 0 ∈ ℝ*
5 0lt1 11151 . . . . . . . . . . 11 0 < 1
6 df-ioo 12732 . . . . . . . . . . . 12 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
7 df-ico 12734 . . . . . . . . . . . 12 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
8 xrltletr 12540 . . . . . . . . . . . 12 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*𝑤 ∈ ℝ*) → ((0 < 1 ∧ 1 ≤ 𝑤) → 0 < 𝑤))
96, 7, 8ixxss1 12746 . . . . . . . . . . 11 ((0 ∈ ℝ* ∧ 0 < 1) → (1[,)+∞) ⊆ (0(,)+∞))
104, 5, 9mp2an 688 . . . . . . . . . 10 (1[,)+∞) ⊆ (0(,)+∞)
11 ioorp 12804 . . . . . . . . . 10 (0(,)+∞) = ℝ+
1210, 11sseqtri 4002 . . . . . . . . 9 (1[,)+∞) ⊆ ℝ+
13 sslin 4210 . . . . . . . . 9 ((1[,)+∞) ⊆ ℝ+ → (𝐵 ∩ (1[,)+∞)) ⊆ (𝐵 ∩ ℝ+))
1412, 13ax-mp 5 . . . . . . . 8 (𝐵 ∩ (1[,)+∞)) ⊆ (𝐵 ∩ ℝ+)
15 resmpt 5899 . . . . . . . 8 ((𝐵 ∩ (1[,)+∞)) ⊆ (𝐵 ∩ ℝ+) → ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ (𝐵 ∩ (1[,)+∞))) = (𝑦 ∈ (𝐵 ∩ (1[,)+∞)) ↦ 𝑆))
1614, 15mp1i 13 . . . . . . 7 (𝜑 → ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ (𝐵 ∩ (1[,)+∞))) = (𝑦 ∈ (𝐵 ∩ (1[,)+∞)) ↦ 𝑆))
173, 16eqtr4d 2859 . . . . . 6 (𝜑 → ((𝑦𝐵𝑆) ↾ (𝐵 ∩ (1[,)+∞))) = ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ (𝐵 ∩ (1[,)+∞))))
18 resres 5860 . . . . . 6 (((𝑦𝐵𝑆) ↾ 𝐵) ↾ (1[,)+∞)) = ((𝑦𝐵𝑆) ↾ (𝐵 ∩ (1[,)+∞)))
19 resres 5860 . . . . . 6 (((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ 𝐵) ↾ (1[,)+∞)) = ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ (𝐵 ∩ (1[,)+∞)))
2017, 18, 193eqtr4g 2881 . . . . 5 (𝜑 → (((𝑦𝐵𝑆) ↾ 𝐵) ↾ (1[,)+∞)) = (((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ 𝐵) ↾ (1[,)+∞)))
21 rlimcnp2.r . . . . . . . . 9 ((𝜑𝑦𝐵) → 𝑆 ∈ ℂ)
2221fmpttd 6872 . . . . . . . 8 (𝜑 → (𝑦𝐵𝑆):𝐵⟶ℂ)
2322ffnd 6509 . . . . . . 7 (𝜑 → (𝑦𝐵𝑆) Fn 𝐵)
24 fnresdm 6460 . . . . . . 7 ((𝑦𝐵𝑆) Fn 𝐵 → ((𝑦𝐵𝑆) ↾ 𝐵) = (𝑦𝐵𝑆))
2523, 24syl 17 . . . . . 6 (𝜑 → ((𝑦𝐵𝑆) ↾ 𝐵) = (𝑦𝐵𝑆))
2625reseq1d 5846 . . . . 5 (𝜑 → (((𝑦𝐵𝑆) ↾ 𝐵) ↾ (1[,)+∞)) = ((𝑦𝐵𝑆) ↾ (1[,)+∞)))
27 elinel1 4171 . . . . . . . . . 10 (𝑦 ∈ (𝐵 ∩ ℝ+) → 𝑦𝐵)
2827, 21sylan2 592 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) → 𝑆 ∈ ℂ)
2928fmpttd 6872 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆):(𝐵 ∩ ℝ+)⟶ℂ)
30 frel 6513 . . . . . . . 8 ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆):(𝐵 ∩ ℝ+)⟶ℂ → Rel (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆))
3129, 30syl 17 . . . . . . 7 (𝜑 → Rel (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆))
32 eqid 2821 . . . . . . . . 9 (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) = (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆)
3332, 28dmmptd 6487 . . . . . . . 8 (𝜑 → dom (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) = (𝐵 ∩ ℝ+))
34 inss1 4204 . . . . . . . 8 (𝐵 ∩ ℝ+) ⊆ 𝐵
3533, 34eqsstrdi 4020 . . . . . . 7 (𝜑 → dom (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ⊆ 𝐵)
36 relssres 5887 . . . . . . 7 ((Rel (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ∧ dom (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ⊆ 𝐵) → ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ 𝐵) = (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆))
3731, 35, 36syl2anc 584 . . . . . 6 (𝜑 → ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ 𝐵) = (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆))
3837reseq1d 5846 . . . . 5 (𝜑 → (((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ 𝐵) ↾ (1[,)+∞)) = ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ (1[,)+∞)))
3920, 26, 383eqtr3d 2864 . . . 4 (𝜑 → ((𝑦𝐵𝑆) ↾ (1[,)+∞)) = ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ (1[,)+∞)))
4039breq1d 5068 . . 3 (𝜑 → (((𝑦𝐵𝑆) ↾ (1[,)+∞)) ⇝𝑟 𝐶 ↔ ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ (1[,)+∞)) ⇝𝑟 𝐶))
41 rlimcnp2.b . . . 4 (𝜑𝐵 ⊆ ℝ)
42 1red 10631 . . . 4 (𝜑 → 1 ∈ ℝ)
4322, 41, 42rlimresb 14912 . . 3 (𝜑 → ((𝑦𝐵𝑆) ⇝𝑟 𝐶 ↔ ((𝑦𝐵𝑆) ↾ (1[,)+∞)) ⇝𝑟 𝐶))
4434, 41sstrid 3977 . . . 4 (𝜑 → (𝐵 ∩ ℝ+) ⊆ ℝ)
4529, 44, 42rlimresb 14912 . . 3 (𝜑 → ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ⇝𝑟 𝐶 ↔ ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ↾ (1[,)+∞)) ⇝𝑟 𝐶))
4640, 43, 453bitr4d 312 . 2 (𝜑 → ((𝑦𝐵𝑆) ⇝𝑟 𝐶 ↔ (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ⇝𝑟 𝐶))
47 inss2 4205 . . . . . . . . . . 11 (𝐵 ∩ ℝ+) ⊆ ℝ+
4847a1i 11 . . . . . . . . . 10 (𝜑 → (𝐵 ∩ ℝ+) ⊆ ℝ+)
4948sselda 3966 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) → 𝑦 ∈ ℝ+)
5049rpreccld 12431 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) → (1 / 𝑦) ∈ ℝ+)
5150rpne0d 12426 . . . . . . 7 ((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) → (1 / 𝑦) ≠ 0)
5251neneqd 3021 . . . . . 6 ((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) → ¬ (1 / 𝑦) = 0)
5352iffalsed 4476 . . . . 5 ((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) → if((1 / 𝑦) = 0, 𝐶, (1 / 𝑦) / 𝑥𝑅) = (1 / 𝑦) / 𝑥𝑅)
54 oveq2 7153 . . . . . . . . . 10 (𝑥 = (1 / 𝑦) → (1 / 𝑥) = (1 / (1 / 𝑦)))
55 rpcnne0 12397 . . . . . . . . . . 11 (𝑦 ∈ ℝ+ → (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
56 recrec 11326 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (1 / (1 / 𝑦)) = 𝑦)
5749, 55, 563syl 18 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) → (1 / (1 / 𝑦)) = 𝑦)
5854, 57sylan9eqr 2878 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) ∧ 𝑥 = (1 / 𝑦)) → (1 / 𝑥) = 𝑦)
5958eqcomd 2827 . . . . . . . 8 (((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) ∧ 𝑥 = (1 / 𝑦)) → 𝑦 = (1 / 𝑥))
60 rlimcnp2.s . . . . . . . 8 (𝑦 = (1 / 𝑥) → 𝑆 = 𝑅)
6159, 60syl 17 . . . . . . 7 (((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) ∧ 𝑥 = (1 / 𝑦)) → 𝑆 = 𝑅)
6261eqcomd 2827 . . . . . 6 (((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) ∧ 𝑥 = (1 / 𝑦)) → 𝑅 = 𝑆)
6350, 62csbied 3918 . . . . 5 ((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) → (1 / 𝑦) / 𝑥𝑅 = 𝑆)
6453, 63eqtrd 2856 . . . 4 ((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) → if((1 / 𝑦) = 0, 𝐶, (1 / 𝑦) / 𝑥𝑅) = 𝑆)
6564mpteq2dva 5153 . . 3 (𝜑 → (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ if((1 / 𝑦) = 0, 𝐶, (1 / 𝑦) / 𝑥𝑅)) = (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆))
6665breq1d 5068 . 2 (𝜑 → ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ if((1 / 𝑦) = 0, 𝐶, (1 / 𝑦) / 𝑥𝑅)) ⇝𝑟 𝐶 ↔ (𝑦 ∈ (𝐵 ∩ ℝ+) ↦ 𝑆) ⇝𝑟 𝐶))
67 rlimcnp2.a . . . 4 (𝜑𝐴 ⊆ (0[,)+∞))
68 rlimcnp2.0 . . . 4 (𝜑 → 0 ∈ 𝐴)
69 rlimcnp2.c . . . . . 6 (𝜑𝐶 ∈ ℂ)
7069ad2antrr 722 . . . . 5 (((𝜑𝑤𝐴) ∧ 𝑤 = 0) → 𝐶 ∈ ℂ)
7167sselda 3966 . . . . . . . . . . . 12 ((𝜑𝑤𝐴) → 𝑤 ∈ (0[,)+∞))
72 0re 10632 . . . . . . . . . . . . 13 0 ∈ ℝ
73 pnfxr 10684 . . . . . . . . . . . . 13 +∞ ∈ ℝ*
74 elico2 12790 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝑤 ∈ (0[,)+∞) ↔ (𝑤 ∈ ℝ ∧ 0 ≤ 𝑤𝑤 < +∞)))
7572, 73, 74mp2an 688 . . . . . . . . . . . 12 (𝑤 ∈ (0[,)+∞) ↔ (𝑤 ∈ ℝ ∧ 0 ≤ 𝑤𝑤 < +∞))
7671, 75sylib 219 . . . . . . . . . . 11 ((𝜑𝑤𝐴) → (𝑤 ∈ ℝ ∧ 0 ≤ 𝑤𝑤 < +∞))
7776simp1d 1134 . . . . . . . . . 10 ((𝜑𝑤𝐴) → 𝑤 ∈ ℝ)
7877adantr 481 . . . . . . . . 9 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → 𝑤 ∈ ℝ)
7976simp2d 1135 . . . . . . . . . . . . . 14 ((𝜑𝑤𝐴) → 0 ≤ 𝑤)
80 leloe 10716 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ 𝑤 ∈ ℝ) → (0 ≤ 𝑤 ↔ (0 < 𝑤 ∨ 0 = 𝑤)))
8172, 77, 80sylancr 587 . . . . . . . . . . . . . 14 ((𝜑𝑤𝐴) → (0 ≤ 𝑤 ↔ (0 < 𝑤 ∨ 0 = 𝑤)))
8279, 81mpbid 233 . . . . . . . . . . . . 13 ((𝜑𝑤𝐴) → (0 < 𝑤 ∨ 0 = 𝑤))
8382ord 858 . . . . . . . . . . . 12 ((𝜑𝑤𝐴) → (¬ 0 < 𝑤 → 0 = 𝑤))
84 eqcom 2828 . . . . . . . . . . . 12 (0 = 𝑤𝑤 = 0)
8583, 84syl6ib 252 . . . . . . . . . . 11 ((𝜑𝑤𝐴) → (¬ 0 < 𝑤𝑤 = 0))
8685con1d 147 . . . . . . . . . 10 ((𝜑𝑤𝐴) → (¬ 𝑤 = 0 → 0 < 𝑤))
8786imp 407 . . . . . . . . 9 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → 0 < 𝑤)
8878, 87elrpd 12418 . . . . . . . 8 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → 𝑤 ∈ ℝ+)
89 rpcnne0 12397 . . . . . . . . 9 (𝑤 ∈ ℝ+ → (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0))
90 recrec 11326 . . . . . . . . 9 ((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) → (1 / (1 / 𝑤)) = 𝑤)
9189, 90syl 17 . . . . . . . 8 (𝑤 ∈ ℝ+ → (1 / (1 / 𝑤)) = 𝑤)
9288, 91syl 17 . . . . . . 7 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → (1 / (1 / 𝑤)) = 𝑤)
9392csbeq1d 3886 . . . . . 6 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → (1 / (1 / 𝑤)) / 𝑥𝑅 = 𝑤 / 𝑥𝑅)
94 oveq2 7153 . . . . . . . . 9 (𝑦 = (1 / 𝑤) → (1 / 𝑦) = (1 / (1 / 𝑤)))
9594csbeq1d 3886 . . . . . . . 8 (𝑦 = (1 / 𝑤) → (1 / 𝑦) / 𝑥𝑅 = (1 / (1 / 𝑤)) / 𝑥𝑅)
9695eleq1d 2897 . . . . . . 7 (𝑦 = (1 / 𝑤) → ((1 / 𝑦) / 𝑥𝑅 ∈ ℂ ↔ (1 / (1 / 𝑤)) / 𝑥𝑅 ∈ ℂ))
9763, 28eqeltrd 2913 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐵 ∩ ℝ+)) → (1 / 𝑦) / 𝑥𝑅 ∈ ℂ)
9897ralrimiva 3182 . . . . . . . 8 (𝜑 → ∀𝑦 ∈ (𝐵 ∩ ℝ+)(1 / 𝑦) / 𝑥𝑅 ∈ ℂ)
9998ad2antrr 722 . . . . . . 7 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → ∀𝑦 ∈ (𝐵 ∩ ℝ+)(1 / 𝑦) / 𝑥𝑅 ∈ ℂ)
100 simplr 765 . . . . . . . . 9 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → 𝑤𝐴)
101 simpll 763 . . . . . . . . . 10 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → 𝜑)
102 eleq1 2900 . . . . . . . . . . . . 13 (𝑦 = (1 / 𝑤) → (𝑦𝐵 ↔ (1 / 𝑤) ∈ 𝐵))
10394eleq1d 2897 . . . . . . . . . . . . 13 (𝑦 = (1 / 𝑤) → ((1 / 𝑦) ∈ 𝐴 ↔ (1 / (1 / 𝑤)) ∈ 𝐴))
104102, 103bibi12d 347 . . . . . . . . . . . 12 (𝑦 = (1 / 𝑤) → ((𝑦𝐵 ↔ (1 / 𝑦) ∈ 𝐴) ↔ ((1 / 𝑤) ∈ 𝐵 ↔ (1 / (1 / 𝑤)) ∈ 𝐴)))
105 rlimcnp2.d . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ+) → (𝑦𝐵 ↔ (1 / 𝑦) ∈ 𝐴))
106105ralrimiva 3182 . . . . . . . . . . . . 13 (𝜑 → ∀𝑦 ∈ ℝ+ (𝑦𝐵 ↔ (1 / 𝑦) ∈ 𝐴))
107106adantr 481 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ℝ+) → ∀𝑦 ∈ ℝ+ (𝑦𝐵 ↔ (1 / 𝑦) ∈ 𝐴))
108 rpreccl 12405 . . . . . . . . . . . . 13 (𝑤 ∈ ℝ+ → (1 / 𝑤) ∈ ℝ+)
109108adantl 482 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ℝ+) → (1 / 𝑤) ∈ ℝ+)
110104, 107, 109rspcdva 3624 . . . . . . . . . . 11 ((𝜑𝑤 ∈ ℝ+) → ((1 / 𝑤) ∈ 𝐵 ↔ (1 / (1 / 𝑤)) ∈ 𝐴))
11191adantl 482 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ℝ+) → (1 / (1 / 𝑤)) = 𝑤)
112111eleq1d 2897 . . . . . . . . . . 11 ((𝜑𝑤 ∈ ℝ+) → ((1 / (1 / 𝑤)) ∈ 𝐴𝑤𝐴))
113110, 112bitr2d 281 . . . . . . . . . 10 ((𝜑𝑤 ∈ ℝ+) → (𝑤𝐴 ↔ (1 / 𝑤) ∈ 𝐵))
114101, 88, 113syl2anc 584 . . . . . . . . 9 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → (𝑤𝐴 ↔ (1 / 𝑤) ∈ 𝐵))
115100, 114mpbid 233 . . . . . . . 8 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → (1 / 𝑤) ∈ 𝐵)
11688rpreccld 12431 . . . . . . . 8 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → (1 / 𝑤) ∈ ℝ+)
117115, 116elind 4170 . . . . . . 7 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → (1 / 𝑤) ∈ (𝐵 ∩ ℝ+))
11896, 99, 117rspcdva 3624 . . . . . 6 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → (1 / (1 / 𝑤)) / 𝑥𝑅 ∈ ℂ)
11993, 118eqeltrrd 2914 . . . . 5 (((𝜑𝑤𝐴) ∧ ¬ 𝑤 = 0) → 𝑤 / 𝑥𝑅 ∈ ℂ)
12070, 119ifclda 4499 . . . 4 ((𝜑𝑤𝐴) → if(𝑤 = 0, 𝐶, 𝑤 / 𝑥𝑅) ∈ ℂ)
121109biantrud 532 . . . . . 6 ((𝜑𝑤 ∈ ℝ+) → ((1 / 𝑤) ∈ 𝐵 ↔ ((1 / 𝑤) ∈ 𝐵 ∧ (1 / 𝑤) ∈ ℝ+)))
122113, 121bitrd 280 . . . . 5 ((𝜑𝑤 ∈ ℝ+) → (𝑤𝐴 ↔ ((1 / 𝑤) ∈ 𝐵 ∧ (1 / 𝑤) ∈ ℝ+)))
123 elin 4168 . . . . 5 ((1 / 𝑤) ∈ (𝐵 ∩ ℝ+) ↔ ((1 / 𝑤) ∈ 𝐵 ∧ (1 / 𝑤) ∈ ℝ+))
124122, 123syl6bbr 290 . . . 4 ((𝜑𝑤 ∈ ℝ+) → (𝑤𝐴 ↔ (1 / 𝑤) ∈ (𝐵 ∩ ℝ+)))
125 iftrue 4471 . . . 4 (𝑤 = 0 → if(𝑤 = 0, 𝐶, 𝑤 / 𝑥𝑅) = 𝐶)
126 eqeq1 2825 . . . . 5 (𝑤 = (1 / 𝑦) → (𝑤 = 0 ↔ (1 / 𝑦) = 0))
127 csbeq1 3885 . . . . 5 (𝑤 = (1 / 𝑦) → 𝑤 / 𝑥𝑅 = (1 / 𝑦) / 𝑥𝑅)
128126, 127ifbieq2d 4490 . . . 4 (𝑤 = (1 / 𝑦) → if(𝑤 = 0, 𝐶, 𝑤 / 𝑥𝑅) = if((1 / 𝑦) = 0, 𝐶, (1 / 𝑦) / 𝑥𝑅))
129 rlimcnp2.j . . . 4 𝐽 = (TopOpen‘ℂfld)
130 rlimcnp2.k . . . 4 𝐾 = (𝐽t 𝐴)
13167, 68, 48, 120, 124, 125, 128, 129, 130rlimcnp 25471 . . 3 (𝜑 → ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ if((1 / 𝑦) = 0, 𝐶, (1 / 𝑦) / 𝑥𝑅)) ⇝𝑟 𝐶 ↔ (𝑤𝐴 ↦ if(𝑤 = 0, 𝐶, 𝑤 / 𝑥𝑅)) ∈ ((𝐾 CnP 𝐽)‘0)))
132 nfcv 2977 . . . . 5 𝑤if(𝑥 = 0, 𝐶, 𝑅)
133 nfv 1906 . . . . . 6 𝑥 𝑤 = 0
134 nfcv 2977 . . . . . 6 𝑥𝐶
135 nfcsb1v 3906 . . . . . 6 𝑥𝑤 / 𝑥𝑅
136133, 134, 135nfif 4494 . . . . 5 𝑥if(𝑤 = 0, 𝐶, 𝑤 / 𝑥𝑅)
137 eqeq1 2825 . . . . . 6 (𝑥 = 𝑤 → (𝑥 = 0 ↔ 𝑤 = 0))
138 csbeq1a 3896 . . . . . 6 (𝑥 = 𝑤𝑅 = 𝑤 / 𝑥𝑅)
139137, 138ifbieq2d 4490 . . . . 5 (𝑥 = 𝑤 → if(𝑥 = 0, 𝐶, 𝑅) = if(𝑤 = 0, 𝐶, 𝑤 / 𝑥𝑅))
140132, 136, 139cbvmpt 5159 . . . 4 (𝑥𝐴 ↦ if(𝑥 = 0, 𝐶, 𝑅)) = (𝑤𝐴 ↦ if(𝑤 = 0, 𝐶, 𝑤 / 𝑥𝑅))
141140eleq1i 2903 . . 3 ((𝑥𝐴 ↦ if(𝑥 = 0, 𝐶, 𝑅)) ∈ ((𝐾 CnP 𝐽)‘0) ↔ (𝑤𝐴 ↦ if(𝑤 = 0, 𝐶, 𝑤 / 𝑥𝑅)) ∈ ((𝐾 CnP 𝐽)‘0))
142131, 141syl6bbr 290 . 2 (𝜑 → ((𝑦 ∈ (𝐵 ∩ ℝ+) ↦ if((1 / 𝑦) = 0, 𝐶, (1 / 𝑦) / 𝑥𝑅)) ⇝𝑟 𝐶 ↔ (𝑥𝐴 ↦ if(𝑥 = 0, 𝐶, 𝑅)) ∈ ((𝐾 CnP 𝐽)‘0)))
14346, 66, 1423bitr2d 308 1 (𝜑 → ((𝑦𝐵𝑆) ⇝𝑟 𝐶 ↔ (𝑥𝐴 ↦ if(𝑥 = 0, 𝐶, 𝑅)) ∈ ((𝐾 CnP 𝐽)‘0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 841  w3a 1079   = wceq 1528  wcel 2105  wne 3016  wral 3138  csb 3882  cin 3934  wss 3935  ifcif 4465   class class class wbr 5058  cmpt 5138  dom cdm 5549  cres 5551  Rel wrel 5554   Fn wfn 6344  wf 6345  cfv 6349  (class class class)co 7145  cc 10524  cr 10525  0cc0 10526  1c1 10527  +∞cpnf 10661  *cxr 10663   < clt 10664  cle 10665   / cdiv 11286  +crp 12379  (,)cioo 12728  [,)cico 12730  𝑟 crli 14832  t crest 16684  TopOpenctopn 16685  fldccnfld 20475   CnP ccnp 21763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4833  df-int 4870  df-iun 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-oadd 8097  df-er 8279  df-map 8398  df-pm 8399  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-sup 8895  df-inf 8896  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-4 11691  df-5 11692  df-6 11693  df-7 11694  df-8 11695  df-9 11696  df-n0 11887  df-z 11971  df-dec 12088  df-uz 12233  df-q 12338  df-rp 12380  df-xneg 12497  df-xadd 12498  df-xmul 12499  df-ioo 12732  df-ico 12734  df-fz 12883  df-seq 13360  df-exp 13420  df-cj 14448  df-re 14449  df-im 14450  df-sqrt 14584  df-abs 14585  df-rlim 14836  df-struct 16475  df-ndx 16476  df-slot 16477  df-base 16479  df-plusg 16568  df-mulr 16569  df-starv 16570  df-tset 16574  df-ple 16575  df-ds 16577  df-unif 16578  df-rest 16686  df-topn 16687  df-topgen 16707  df-psmet 20467  df-xmet 20468  df-met 20469  df-bl 20470  df-mopn 20471  df-cnfld 20476  df-top 21432  df-topon 21449  df-bases 21484  df-cnp 21766
This theorem is referenced by:  rlimcnp3  25473
  Copyright terms: Public domain W3C validator