| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fprodrec | Unicode version | ||
| Description: The finite product of reciprocals is the reciprocal of the product. (Contributed by Jim Kingdon, 28-Aug-2024.) |
| Ref | Expression |
|---|---|
| fprodrec.a |
|
| fprodrec.ccl |
|
| fprodrec.cap |
|
| Ref | Expression |
|---|---|
| fprodrec |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prodeq1 11897 |
. . 3
| |
| 2 | prodeq1 11897 |
. . . 4
| |
| 3 | 2 | oveq2d 5962 |
. . 3
|
| 4 | 1, 3 | eqeq12d 2220 |
. 2
|
| 5 | prodeq1 11897 |
. . 3
| |
| 6 | prodeq1 11897 |
. . . 4
| |
| 7 | 6 | oveq2d 5962 |
. . 3
|
| 8 | 5, 7 | eqeq12d 2220 |
. 2
|
| 9 | prodeq1 11897 |
. . 3
| |
| 10 | prodeq1 11897 |
. . . 4
| |
| 11 | 10 | oveq2d 5962 |
. . 3
|
| 12 | 9, 11 | eqeq12d 2220 |
. 2
|
| 13 | prodeq1 11897 |
. . 3
| |
| 14 | prodeq1 11897 |
. . . 4
| |
| 15 | 14 | oveq2d 5962 |
. . 3
|
| 16 | 13, 15 | eqeq12d 2220 |
. 2
|
| 17 | 1div1e1 8779 |
. . . 4
| |
| 18 | prod0 11929 |
. . . . 5
| |
| 19 | 18 | oveq2i 5957 |
. . . 4
|
| 20 | prod0 11929 |
. . . 4
| |
| 21 | 17, 19, 20 | 3eqtr4ri 2237 |
. . 3
|
| 22 | 21 | a1i 9 |
. 2
|
| 23 | simpr 110 |
. . . . . 6
| |
| 24 | 23 | oveq1d 5961 |
. . . . 5
|
| 25 | 1cnd 8090 |
. . . . . . 7
| |
| 26 | simplr 528 |
. . . . . . . . 9
| |
| 27 | simplll 533 |
. . . . . . . . . 10
| |
| 28 | simplrl 535 |
. . . . . . . . . . 11
| |
| 29 | simpr 110 |
. . . . . . . . . . 11
| |
| 30 | 28, 29 | sseldd 3194 |
. . . . . . . . . 10
|
| 31 | fprodrec.ccl |
. . . . . . . . . 10
| |
| 32 | 27, 30, 31 | syl2anc 411 |
. . . . . . . . 9
|
| 33 | 26, 32 | fprodcl 11951 |
. . . . . . . 8
|
| 34 | 33 | adantr 276 |
. . . . . . 7
|
| 35 | simprr 531 |
. . . . . . . . . 10
| |
| 36 | 35 | eldifad 3177 |
. . . . . . . . 9
|
| 37 | 31 | ralrimiva 2579 |
. . . . . . . . . 10
|
| 38 | 37 | ad2antrr 488 |
. . . . . . . . 9
|
| 39 | nfcsb1v 3126 |
. . . . . . . . . . 11
| |
| 40 | 39 | nfel1 2359 |
. . . . . . . . . 10
|
| 41 | csbeq1a 3102 |
. . . . . . . . . . 11
| |
| 42 | 41 | eleq1d 2274 |
. . . . . . . . . 10
|
| 43 | 40, 42 | rspc 2871 |
. . . . . . . . 9
|
| 44 | 36, 38, 43 | sylc 62 |
. . . . . . . 8
|
| 45 | 44 | adantr 276 |
. . . . . . 7
|
| 46 | fprodrec.cap |
. . . . . . . . . 10
| |
| 47 | 27, 30, 46 | syl2anc 411 |
. . . . . . . . 9
|
| 48 | 26, 32, 47 | fprodap0 11965 |
. . . . . . . 8
|
| 49 | 48 | adantr 276 |
. . . . . . 7
|
| 50 | 46 | ralrimiva 2579 |
. . . . . . . . . 10
|
| 51 | 50 | ad2antrr 488 |
. . . . . . . . 9
|
| 52 | nfcv 2348 |
. . . . . . . . . . 11
| |
| 53 | nfcv 2348 |
. . . . . . . . . . 11
| |
| 54 | 39, 52, 53 | nfbr 4091 |
. . . . . . . . . 10
|
| 55 | 41 | breq1d 4055 |
. . . . . . . . . 10
|
| 56 | 54, 55 | rspc 2871 |
. . . . . . . . 9
|
| 57 | 36, 51, 56 | sylc 62 |
. . . . . . . 8
|
| 58 | 57 | adantr 276 |
. . . . . . 7
|
| 59 | 25, 34, 25, 45, 49, 58 | divmuldivapd 8907 |
. . . . . 6
|
| 60 | 1t1e1 9191 |
. . . . . . 7
| |
| 61 | 60 | oveq1i 5956 |
. . . . . 6
|
| 62 | 59, 61 | eqtrdi 2254 |
. . . . 5
|
| 63 | 24, 62 | eqtrd 2238 |
. . . 4
|
| 64 | nfcv 2348 |
. . . . . . 7
| |
| 65 | nfcv 2348 |
. . . . . . 7
| |
| 66 | 64, 65, 39 | nfov 5976 |
. . . . . 6
|
| 67 | 35 | eldifbd 3178 |
. . . . . 6
|
| 68 | 32, 47 | recclapd 8856 |
. . . . . 6
|
| 69 | 44, 57 | recclapd 8856 |
. . . . . 6
|
| 70 | 41 | oveq2d 5962 |
. . . . . 6
|
| 71 | 66, 26, 35, 67, 68, 69, 70 | fprodunsn 11948 |
. . . . 5
|
| 72 | 71 | adantr 276 |
. . . 4
|
| 73 | 39, 26, 35, 67, 32, 44, 41 | fprodunsn 11948 |
. . . . . 6
|
| 74 | 73 | oveq2d 5962 |
. . . . 5
|
| 75 | 74 | adantr 276 |
. . . 4
|
| 76 | 63, 72, 75 | 3eqtr4d 2248 |
. . 3
|
| 77 | 76 | ex 115 |
. 2
|
| 78 | fprodrec.a |
. 2
| |
| 79 | 4, 8, 12, 16, 22, 77, 78 | findcard2sd 6991 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-iinf 4637 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-mulrcl 8026 ax-addcom 8027 ax-mulcom 8028 ax-addass 8029 ax-mulass 8030 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-1rid 8034 ax-0id 8035 ax-rnegex 8036 ax-precex 8037 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-apti 8042 ax-pre-ltadd 8043 ax-pre-mulgt0 8044 ax-pre-mulext 8045 ax-arch 8046 ax-caucvg 8047 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-id 4341 df-po 4344 df-iso 4345 df-iord 4414 df-on 4416 df-ilim 4417 df-suc 4419 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-isom 5281 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-recs 6393 df-irdg 6458 df-frec 6479 df-1o 6504 df-oadd 6508 df-er 6622 df-en 6830 df-dom 6831 df-fin 6832 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-reap 8650 df-ap 8657 df-div 8748 df-inn 9039 df-2 9097 df-3 9098 df-4 9099 df-n0 9298 df-z 9375 df-uz 9651 df-q 9743 df-rp 9778 df-fz 10133 df-fzo 10267 df-seqfrec 10595 df-exp 10686 df-ihash 10923 df-cj 11186 df-re 11187 df-im 11188 df-rsqrt 11342 df-abs 11343 df-clim 11623 df-proddc 11895 |
| This theorem is referenced by: fproddivap 11974 |
| Copyright terms: Public domain | W3C validator |