ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodrec Unicode version

Theorem fprodrec 12055
Description: The finite product of reciprocals is the reciprocal of the product. (Contributed by Jim Kingdon, 28-Aug-2024.)
Hypotheses
Ref Expression
fprodrec.a  |-  ( ph  ->  A  e.  Fin )
fprodrec.ccl  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
fprodrec.cap  |-  ( (
ph  /\  k  e.  A )  ->  B #  0 )
Assertion
Ref Expression
fprodrec  |-  ( ph  ->  prod_ k  e.  A  ( 1  /  B
)  =  ( 1  /  prod_ k  e.  A  B ) )
Distinct variable groups:    A, k    ph, k
Allowed substitution hint:    B( k)

Proof of Theorem fprodrec
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 11979 . . 3  |-  ( w  =  (/)  ->  prod_ k  e.  w  ( 1  /  B )  = 
prod_ k  e.  (/)  ( 1  /  B ) )
2 prodeq1 11979 . . . 4  |-  ( w  =  (/)  ->  prod_ k  e.  w  B  =  prod_ k  e.  (/)  B )
32oveq2d 5983 . . 3  |-  ( w  =  (/)  ->  ( 1  /  prod_ k  e.  w  B )  =  ( 1  /  prod_ k  e.  (/)  B ) )
41, 3eqeq12d 2222 . 2  |-  ( w  =  (/)  ->  ( prod_
k  e.  w  ( 1  /  B )  =  ( 1  /  prod_ k  e.  w  B )  <->  prod_ k  e.  (/)  ( 1  /  B
)  =  ( 1  /  prod_ k  e.  (/)  B ) ) )
5 prodeq1 11979 . . 3  |-  ( w  =  y  ->  prod_ k  e.  w  ( 1  /  B )  = 
prod_ k  e.  y 
( 1  /  B
) )
6 prodeq1 11979 . . . 4  |-  ( w  =  y  ->  prod_ k  e.  w  B  = 
prod_ k  e.  y  B )
76oveq2d 5983 . . 3  |-  ( w  =  y  ->  (
1  /  prod_ k  e.  w  B )  =  ( 1  /  prod_ k  e.  y  B ) )
85, 7eqeq12d 2222 . 2  |-  ( w  =  y  ->  ( prod_ k  e.  w  ( 1  /  B )  =  ( 1  /  prod_ k  e.  w  B )  <->  prod_ k  e.  y  ( 1  /  B
)  =  ( 1  /  prod_ k  e.  y  B ) ) )
9 prodeq1 11979 . . 3  |-  ( w  =  ( y  u. 
{ z } )  ->  prod_ k  e.  w  ( 1  /  B
)  =  prod_ k  e.  ( y  u.  {
z } ) ( 1  /  B ) )
10 prodeq1 11979 . . . 4  |-  ( w  =  ( y  u. 
{ z } )  ->  prod_ k  e.  w  B  =  prod_ k  e.  ( y  u.  {
z } ) B )
1110oveq2d 5983 . . 3  |-  ( w  =  ( y  u. 
{ z } )  ->  ( 1  /  prod_ k  e.  w  B )  =  ( 1  /  prod_ k  e.  ( y  u.  { z } ) B ) )
129, 11eqeq12d 2222 . 2  |-  ( w  =  ( y  u. 
{ z } )  ->  ( prod_ k  e.  w  ( 1  /  B )  =  ( 1  /  prod_ k  e.  w  B )  <->  prod_ k  e.  ( y  u.  { z } ) ( 1  /  B )  =  ( 1  /  prod_ k  e.  ( y  u.  {
z } ) B ) ) )
13 prodeq1 11979 . . 3  |-  ( w  =  A  ->  prod_ k  e.  w  ( 1  /  B )  = 
prod_ k  e.  A  ( 1  /  B
) )
14 prodeq1 11979 . . . 4  |-  ( w  =  A  ->  prod_ k  e.  w  B  = 
prod_ k  e.  A  B )
1514oveq2d 5983 . . 3  |-  ( w  =  A  ->  (
1  /  prod_ k  e.  w  B )  =  ( 1  /  prod_ k  e.  A  B
) )
1613, 15eqeq12d 2222 . 2  |-  ( w  =  A  ->  ( prod_ k  e.  w  ( 1  /  B )  =  ( 1  /  prod_ k  e.  w  B )  <->  prod_ k  e.  A  ( 1  /  B
)  =  ( 1  /  prod_ k  e.  A  B ) ) )
17 1div1e1 8812 . . . 4  |-  ( 1  /  1 )  =  1
18 prod0 12011 . . . . 5  |-  prod_ k  e.  (/)  B  =  1
1918oveq2i 5978 . . . 4  |-  ( 1  /  prod_ k  e.  (/)  B )  =  ( 1  /  1 )
20 prod0 12011 . . . 4  |-  prod_ k  e.  (/)  ( 1  /  B )  =  1
2117, 19, 203eqtr4ri 2239 . . 3  |-  prod_ k  e.  (/)  ( 1  /  B )  =  ( 1  /  prod_ k  e.  (/)  B )
2221a1i 9 . 2  |-  ( ph  ->  prod_ k  e.  (/)  ( 1  /  B
)  =  ( 1  /  prod_ k  e.  (/)  B ) )
23 simpr 110 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  ( 1  /  B )  =  ( 1  /  prod_ k  e.  y  B ) )  ->  prod_ k  e.  y  ( 1  /  B )  =  ( 1  /  prod_ k  e.  y  B )
)
2423oveq1d 5982 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  ( 1  /  B )  =  ( 1  /  prod_ k  e.  y  B ) )  ->  ( prod_ k  e.  y  ( 1  /  B )  x.  ( 1  /  [_ z  /  k ]_ B
) )  =  ( ( 1  /  prod_ k  e.  y  B )  x.  ( 1  /  [_ z  /  k ]_ B ) ) )
25 1cnd 8123 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  ( 1  /  B )  =  ( 1  /  prod_ k  e.  y  B ) )  ->  1  e.  CC )
26 simplr 528 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  y  e.  Fin )
27 simplll 533 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  ph )
28 simplrl 535 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  y  C_  A )
29 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  k  e.  y )
3028, 29sseldd 3202 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  k  e.  A )
31 fprodrec.ccl . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
3227, 30, 31syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  B  e.  CC )
3326, 32fprodcl 12033 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  prod_ k  e.  y  B  e.  CC )
3433adantr 276 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  ( 1  /  B )  =  ( 1  /  prod_ k  e.  y  B ) )  ->  prod_ k  e.  y  B  e.  CC )
35 simprr 531 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  z  e.  ( A  \  y ) )
3635eldifad 3185 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  z  e.  A
)
3731ralrimiva 2581 . . . . . . . . . 10  |-  ( ph  ->  A. k  e.  A  B  e.  CC )
3837ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  A. k  e.  A  B  e.  CC )
39 nfcsb1v 3134 . . . . . . . . . . 11  |-  F/_ k [_ z  /  k ]_ B
4039nfel1 2361 . . . . . . . . . 10  |-  F/ k
[_ z  /  k ]_ B  e.  CC
41 csbeq1a 3110 . . . . . . . . . . 11  |-  ( k  =  z  ->  B  =  [_ z  /  k ]_ B )
4241eleq1d 2276 . . . . . . . . . 10  |-  ( k  =  z  ->  ( B  e.  CC  <->  [_ z  / 
k ]_ B  e.  CC ) )
4340, 42rspc 2878 . . . . . . . . 9  |-  ( z  e.  A  ->  ( A. k  e.  A  B  e.  CC  ->  [_ z  /  k ]_ B  e.  CC )
)
4436, 38, 43sylc 62 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  [_ z  /  k ]_ B  e.  CC )
4544adantr 276 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  ( 1  /  B )  =  ( 1  /  prod_ k  e.  y  B ) )  ->  [_ z  / 
k ]_ B  e.  CC )
46 fprodrec.cap . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  A )  ->  B #  0 )
4727, 30, 46syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  B #  0 )
4826, 32, 47fprodap0 12047 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  prod_ k  e.  y  B #  0 )
4948adantr 276 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  ( 1  /  B )  =  ( 1  /  prod_ k  e.  y  B ) )  ->  prod_ k  e.  y  B #  0 )
5046ralrimiva 2581 . . . . . . . . . 10  |-  ( ph  ->  A. k  e.  A  B #  0 )
5150ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  A. k  e.  A  B #  0 )
52 nfcv 2350 . . . . . . . . . . 11  |-  F/_ k #
53 nfcv 2350 . . . . . . . . . . 11  |-  F/_ k
0
5439, 52, 53nfbr 4106 . . . . . . . . . 10  |-  F/ k
[_ z  /  k ]_ B #  0
5541breq1d 4069 . . . . . . . . . 10  |-  ( k  =  z  ->  ( B #  0  <->  [_ z  /  k ]_ B #  0 )
)
5654, 55rspc 2878 . . . . . . . . 9  |-  ( z  e.  A  ->  ( A. k  e.  A  B #  0  ->  [_ z  /  k ]_ B #  0 ) )
5736, 51, 56sylc 62 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  [_ z  /  k ]_ B #  0 )
5857adantr 276 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  ( 1  /  B )  =  ( 1  /  prod_ k  e.  y  B ) )  ->  [_ z  / 
k ]_ B #  0 )
5925, 34, 25, 45, 49, 58divmuldivapd 8940 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  ( 1  /  B )  =  ( 1  /  prod_ k  e.  y  B ) )  ->  ( (
1  /  prod_ k  e.  y  B )  x.  ( 1  /  [_ z  /  k ]_ B
) )  =  ( ( 1  x.  1 )  /  ( prod_
k  e.  y  B  x.  [_ z  / 
k ]_ B ) ) )
60 1t1e1 9224 . . . . . . 7  |-  ( 1  x.  1 )  =  1
6160oveq1i 5977 . . . . . 6  |-  ( ( 1  x.  1 )  /  ( prod_ k  e.  y  B  x.  [_ z  /  k ]_ B ) )  =  ( 1  /  ( prod_ k  e.  y  B  x.  [_ z  / 
k ]_ B ) )
6259, 61eqtrdi 2256 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  ( 1  /  B )  =  ( 1  /  prod_ k  e.  y  B ) )  ->  ( (
1  /  prod_ k  e.  y  B )  x.  ( 1  /  [_ z  /  k ]_ B
) )  =  ( 1  /  ( prod_
k  e.  y  B  x.  [_ z  / 
k ]_ B ) ) )
6324, 62eqtrd 2240 . . . 4  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  ( 1  /  B )  =  ( 1  /  prod_ k  e.  y  B ) )  ->  ( prod_ k  e.  y  ( 1  /  B )  x.  ( 1  /  [_ z  /  k ]_ B
) )  =  ( 1  /  ( prod_
k  e.  y  B  x.  [_ z  / 
k ]_ B ) ) )
64 nfcv 2350 . . . . . . 7  |-  F/_ k
1
65 nfcv 2350 . . . . . . 7  |-  F/_ k  /
6664, 65, 39nfov 5997 . . . . . 6  |-  F/_ k
( 1  /  [_ z  /  k ]_ B
)
6735eldifbd 3186 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  -.  z  e.  y )
6832, 47recclapd 8889 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  (
1  /  B )  e.  CC )
6944, 57recclapd 8889 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( 1  /  [_ z  /  k ]_ B )  e.  CC )
7041oveq2d 5983 . . . . . 6  |-  ( k  =  z  ->  (
1  /  B )  =  ( 1  /  [_ z  /  k ]_ B ) )
7166, 26, 35, 67, 68, 69, 70fprodunsn 12030 . . . . 5  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  prod_ k  e.  ( y  u.  { z } ) ( 1  /  B )  =  ( prod_ k  e.  y  ( 1  /  B
)  x.  ( 1  /  [_ z  / 
k ]_ B ) ) )
7271adantr 276 . . . 4  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  ( 1  /  B )  =  ( 1  /  prod_ k  e.  y  B ) )  ->  prod_ k  e.  ( y  u.  {
z } ) ( 1  /  B )  =  ( prod_ k  e.  y  ( 1  /  B )  x.  ( 1  /  [_ z  /  k ]_ B
) ) )
7339, 26, 35, 67, 32, 44, 41fprodunsn 12030 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  prod_ k  e.  ( y  u.  { z } ) B  =  ( prod_ k  e.  y  B  x.  [_ z  /  k ]_ B
) )
7473oveq2d 5983 . . . . 5  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( 1  /  prod_ k  e.  ( y  u.  { z } ) B )  =  ( 1  /  ( prod_ k  e.  y  B  x.  [_ z  / 
k ]_ B ) ) )
7574adantr 276 . . . 4  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  ( 1  /  B )  =  ( 1  /  prod_ k  e.  y  B ) )  ->  ( 1  /  prod_ k  e.  ( y  u.  { z } ) B )  =  ( 1  / 
( prod_ k  e.  y  B  x.  [_ z  /  k ]_ B
) ) )
7663, 72, 753eqtr4d 2250 . . 3  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  ( 1  /  B )  =  ( 1  /  prod_ k  e.  y  B ) )  ->  prod_ k  e.  ( y  u.  {
z } ) ( 1  /  B )  =  ( 1  /  prod_ k  e.  ( y  u.  { z } ) B ) )
7776ex 115 . 2  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( prod_ k  e.  y  ( 1  /  B )  =  ( 1  /  prod_ k  e.  y  B )  ->  prod_ k  e.  ( y  u.  { z } ) ( 1  /  B )  =  ( 1  /  prod_ k  e.  ( y  u. 
{ z } ) B ) ) )
78 fprodrec.a . 2  |-  ( ph  ->  A  e.  Fin )
794, 8, 12, 16, 22, 77, 78findcard2sd 7015 1  |-  ( ph  ->  prod_ k  e.  A  ( 1  /  B
)  =  ( 1  /  prod_ k  e.  A  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   A.wral 2486   [_csb 3101    \ cdif 3171    u. cun 3172    C_ wss 3174   (/)c0 3468   {csn 3643   class class class wbr 4059  (class class class)co 5967   Fincfn 6850   CCcc 7958   0cc0 7960   1c1 7961    x. cmul 7965   # cap 8689    / cdiv 8780   prod_cprod 11976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-frec 6500  df-1o 6525  df-oadd 6529  df-er 6643  df-en 6851  df-dom 6852  df-fin 6853  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-fz 10166  df-fzo 10300  df-seqfrec 10630  df-exp 10721  df-ihash 10958  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-clim 11705  df-proddc 11977
This theorem is referenced by:  fproddivap  12056
  Copyright terms: Public domain W3C validator