| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > fprodrec | Unicode version | ||
| Description: The finite product of reciprocals is the reciprocal of the product. (Contributed by Jim Kingdon, 28-Aug-2024.) | 
| Ref | Expression | 
|---|---|
| fprodrec.a | 
 | 
| fprodrec.ccl | 
 | 
| fprodrec.cap | 
 | 
| Ref | Expression | 
|---|---|
| fprodrec | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | prodeq1 11718 | 
. . 3
 | |
| 2 | prodeq1 11718 | 
. . . 4
 | |
| 3 | 2 | oveq2d 5938 | 
. . 3
 | 
| 4 | 1, 3 | eqeq12d 2211 | 
. 2
 | 
| 5 | prodeq1 11718 | 
. . 3
 | |
| 6 | prodeq1 11718 | 
. . . 4
 | |
| 7 | 6 | oveq2d 5938 | 
. . 3
 | 
| 8 | 5, 7 | eqeq12d 2211 | 
. 2
 | 
| 9 | prodeq1 11718 | 
. . 3
 | |
| 10 | prodeq1 11718 | 
. . . 4
 | |
| 11 | 10 | oveq2d 5938 | 
. . 3
 | 
| 12 | 9, 11 | eqeq12d 2211 | 
. 2
 | 
| 13 | prodeq1 11718 | 
. . 3
 | |
| 14 | prodeq1 11718 | 
. . . 4
 | |
| 15 | 14 | oveq2d 5938 | 
. . 3
 | 
| 16 | 13, 15 | eqeq12d 2211 | 
. 2
 | 
| 17 | 1div1e1 8731 | 
. . . 4
 | |
| 18 | prod0 11750 | 
. . . . 5
 | |
| 19 | 18 | oveq2i 5933 | 
. . . 4
 | 
| 20 | prod0 11750 | 
. . . 4
 | |
| 21 | 17, 19, 20 | 3eqtr4ri 2228 | 
. . 3
 | 
| 22 | 21 | a1i 9 | 
. 2
 | 
| 23 | simpr 110 | 
. . . . . 6
 | |
| 24 | 23 | oveq1d 5937 | 
. . . . 5
 | 
| 25 | 1cnd 8042 | 
. . . . . . 7
 | |
| 26 | simplr 528 | 
. . . . . . . . 9
 | |
| 27 | simplll 533 | 
. . . . . . . . . 10
 | |
| 28 | simplrl 535 | 
. . . . . . . . . . 11
 | |
| 29 | simpr 110 | 
. . . . . . . . . . 11
 | |
| 30 | 28, 29 | sseldd 3184 | 
. . . . . . . . . 10
 | 
| 31 | fprodrec.ccl | 
. . . . . . . . . 10
 | |
| 32 | 27, 30, 31 | syl2anc 411 | 
. . . . . . . . 9
 | 
| 33 | 26, 32 | fprodcl 11772 | 
. . . . . . . 8
 | 
| 34 | 33 | adantr 276 | 
. . . . . . 7
 | 
| 35 | simprr 531 | 
. . . . . . . . . 10
 | |
| 36 | 35 | eldifad 3168 | 
. . . . . . . . 9
 | 
| 37 | 31 | ralrimiva 2570 | 
. . . . . . . . . 10
 | 
| 38 | 37 | ad2antrr 488 | 
. . . . . . . . 9
 | 
| 39 | nfcsb1v 3117 | 
. . . . . . . . . . 11
 | |
| 40 | 39 | nfel1 2350 | 
. . . . . . . . . 10
 | 
| 41 | csbeq1a 3093 | 
. . . . . . . . . . 11
 | |
| 42 | 41 | eleq1d 2265 | 
. . . . . . . . . 10
 | 
| 43 | 40, 42 | rspc 2862 | 
. . . . . . . . 9
 | 
| 44 | 36, 38, 43 | sylc 62 | 
. . . . . . . 8
 | 
| 45 | 44 | adantr 276 | 
. . . . . . 7
 | 
| 46 | fprodrec.cap | 
. . . . . . . . . 10
 | |
| 47 | 27, 30, 46 | syl2anc 411 | 
. . . . . . . . 9
 | 
| 48 | 26, 32, 47 | fprodap0 11786 | 
. . . . . . . 8
 | 
| 49 | 48 | adantr 276 | 
. . . . . . 7
 | 
| 50 | 46 | ralrimiva 2570 | 
. . . . . . . . . 10
 | 
| 51 | 50 | ad2antrr 488 | 
. . . . . . . . 9
 | 
| 52 | nfcv 2339 | 
. . . . . . . . . . 11
 | |
| 53 | nfcv 2339 | 
. . . . . . . . . . 11
 | |
| 54 | 39, 52, 53 | nfbr 4079 | 
. . . . . . . . . 10
 | 
| 55 | 41 | breq1d 4043 | 
. . . . . . . . . 10
 | 
| 56 | 54, 55 | rspc 2862 | 
. . . . . . . . 9
 | 
| 57 | 36, 51, 56 | sylc 62 | 
. . . . . . . 8
 | 
| 58 | 57 | adantr 276 | 
. . . . . . 7
 | 
| 59 | 25, 34, 25, 45, 49, 58 | divmuldivapd 8859 | 
. . . . . 6
 | 
| 60 | 1t1e1 9143 | 
. . . . . . 7
 | |
| 61 | 60 | oveq1i 5932 | 
. . . . . 6
 | 
| 62 | 59, 61 | eqtrdi 2245 | 
. . . . 5
 | 
| 63 | 24, 62 | eqtrd 2229 | 
. . . 4
 | 
| 64 | nfcv 2339 | 
. . . . . . 7
 | |
| 65 | nfcv 2339 | 
. . . . . . 7
 | |
| 66 | 64, 65, 39 | nfov 5952 | 
. . . . . 6
 | 
| 67 | 35 | eldifbd 3169 | 
. . . . . 6
 | 
| 68 | 32, 47 | recclapd 8808 | 
. . . . . 6
 | 
| 69 | 44, 57 | recclapd 8808 | 
. . . . . 6
 | 
| 70 | 41 | oveq2d 5938 | 
. . . . . 6
 | 
| 71 | 66, 26, 35, 67, 68, 69, 70 | fprodunsn 11769 | 
. . . . 5
 | 
| 72 | 71 | adantr 276 | 
. . . 4
 | 
| 73 | 39, 26, 35, 67, 32, 44, 41 | fprodunsn 11769 | 
. . . . . 6
 | 
| 74 | 73 | oveq2d 5938 | 
. . . . 5
 | 
| 75 | 74 | adantr 276 | 
. . . 4
 | 
| 76 | 63, 72, 75 | 3eqtr4d 2239 | 
. . 3
 | 
| 77 | 76 | ex 115 | 
. 2
 | 
| 78 | fprodrec.a | 
. 2
 | |
| 79 | 4, 8, 12, 16, 22, 77, 78 | findcard2sd 6953 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-frec 6449 df-1o 6474 df-oadd 6478 df-er 6592 df-en 6800 df-dom 6801 df-fin 6802 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-fz 10084 df-fzo 10218 df-seqfrec 10540 df-exp 10631 df-ihash 10868 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-clim 11444 df-proddc 11716 | 
| This theorem is referenced by: fproddivap 11795 | 
| Copyright terms: Public domain | W3C validator |