Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fprodrec | Unicode version |
Description: The finite product of reciprocals is the reciprocal of the product. (Contributed by Jim Kingdon, 28-Aug-2024.) |
Ref | Expression |
---|---|
fprodrec.a | |
fprodrec.ccl | |
fprodrec.cap | # |
Ref | Expression |
---|---|
fprodrec |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prodeq1 11450 | . . 3 | |
2 | prodeq1 11450 | . . . 4 | |
3 | 2 | oveq2d 5840 | . . 3 |
4 | 1, 3 | eqeq12d 2172 | . 2 |
5 | prodeq1 11450 | . . 3 | |
6 | prodeq1 11450 | . . . 4 | |
7 | 6 | oveq2d 5840 | . . 3 |
8 | 5, 7 | eqeq12d 2172 | . 2 |
9 | prodeq1 11450 | . . 3 | |
10 | prodeq1 11450 | . . . 4 | |
11 | 10 | oveq2d 5840 | . . 3 |
12 | 9, 11 | eqeq12d 2172 | . 2 |
13 | prodeq1 11450 | . . 3 | |
14 | prodeq1 11450 | . . . 4 | |
15 | 14 | oveq2d 5840 | . . 3 |
16 | 13, 15 | eqeq12d 2172 | . 2 |
17 | 1div1e1 8577 | . . . 4 | |
18 | prod0 11482 | . . . . 5 | |
19 | 18 | oveq2i 5835 | . . . 4 |
20 | prod0 11482 | . . . 4 | |
21 | 17, 19, 20 | 3eqtr4ri 2189 | . . 3 |
22 | 21 | a1i 9 | . 2 |
23 | simpr 109 | . . . . . 6 | |
24 | 23 | oveq1d 5839 | . . . . 5 |
25 | 1cnd 7894 | . . . . . . 7 | |
26 | simplr 520 | . . . . . . . . 9 | |
27 | simplll 523 | . . . . . . . . . 10 | |
28 | simplrl 525 | . . . . . . . . . . 11 | |
29 | simpr 109 | . . . . . . . . . . 11 | |
30 | 28, 29 | sseldd 3129 | . . . . . . . . . 10 |
31 | fprodrec.ccl | . . . . . . . . . 10 | |
32 | 27, 30, 31 | syl2anc 409 | . . . . . . . . 9 |
33 | 26, 32 | fprodcl 11504 | . . . . . . . 8 |
34 | 33 | adantr 274 | . . . . . . 7 |
35 | simprr 522 | . . . . . . . . . 10 | |
36 | 35 | eldifad 3113 | . . . . . . . . 9 |
37 | 31 | ralrimiva 2530 | . . . . . . . . . 10 |
38 | 37 | ad2antrr 480 | . . . . . . . . 9 |
39 | nfcsb1v 3064 | . . . . . . . . . . 11 | |
40 | 39 | nfel1 2310 | . . . . . . . . . 10 |
41 | csbeq1a 3040 | . . . . . . . . . . 11 | |
42 | 41 | eleq1d 2226 | . . . . . . . . . 10 |
43 | 40, 42 | rspc 2810 | . . . . . . . . 9 |
44 | 36, 38, 43 | sylc 62 | . . . . . . . 8 |
45 | 44 | adantr 274 | . . . . . . 7 |
46 | fprodrec.cap | . . . . . . . . . 10 # | |
47 | 27, 30, 46 | syl2anc 409 | . . . . . . . . 9 # |
48 | 26, 32, 47 | fprodap0 11518 | . . . . . . . 8 # |
49 | 48 | adantr 274 | . . . . . . 7 # |
50 | 46 | ralrimiva 2530 | . . . . . . . . . 10 # |
51 | 50 | ad2antrr 480 | . . . . . . . . 9 # |
52 | nfcv 2299 | . . . . . . . . . . 11 # | |
53 | nfcv 2299 | . . . . . . . . . . 11 | |
54 | 39, 52, 53 | nfbr 4010 | . . . . . . . . . 10 # |
55 | 41 | breq1d 3975 | . . . . . . . . . 10 # # |
56 | 54, 55 | rspc 2810 | . . . . . . . . 9 # # |
57 | 36, 51, 56 | sylc 62 | . . . . . . . 8 # |
58 | 57 | adantr 274 | . . . . . . 7 # |
59 | 25, 34, 25, 45, 49, 58 | divmuldivapd 8705 | . . . . . 6 |
60 | 1t1e1 8985 | . . . . . . 7 | |
61 | 60 | oveq1i 5834 | . . . . . 6 |
62 | 59, 61 | eqtrdi 2206 | . . . . 5 |
63 | 24, 62 | eqtrd 2190 | . . . 4 |
64 | nfcv 2299 | . . . . . . 7 | |
65 | nfcv 2299 | . . . . . . 7 | |
66 | 64, 65, 39 | nfov 5851 | . . . . . 6 |
67 | 35 | eldifbd 3114 | . . . . . 6 |
68 | 32, 47 | recclapd 8654 | . . . . . 6 |
69 | 44, 57 | recclapd 8654 | . . . . . 6 |
70 | 41 | oveq2d 5840 | . . . . . 6 |
71 | 66, 26, 35, 67, 68, 69, 70 | fprodunsn 11501 | . . . . 5 |
72 | 71 | adantr 274 | . . . 4 |
73 | 39, 26, 35, 67, 32, 44, 41 | fprodunsn 11501 | . . . . . 6 |
74 | 73 | oveq2d 5840 | . . . . 5 |
75 | 74 | adantr 274 | . . . 4 |
76 | 63, 72, 75 | 3eqtr4d 2200 | . . 3 |
77 | 76 | ex 114 | . 2 |
78 | fprodrec.a | . 2 | |
79 | 4, 8, 12, 16, 22, 77, 78 | findcard2sd 6837 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1335 wcel 2128 wral 2435 csb 3031 cdif 3099 cun 3100 wss 3102 c0 3394 csn 3560 class class class wbr 3965 (class class class)co 5824 cfn 6685 cc 7730 cc0 7732 c1 7733 cmul 7737 # cap 8456 cdiv 8545 cprod 11447 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4496 ax-iinf 4547 ax-cnex 7823 ax-resscn 7824 ax-1cn 7825 ax-1re 7826 ax-icn 7827 ax-addcl 7828 ax-addrcl 7829 ax-mulcl 7830 ax-mulrcl 7831 ax-addcom 7832 ax-mulcom 7833 ax-addass 7834 ax-mulass 7835 ax-distr 7836 ax-i2m1 7837 ax-0lt1 7838 ax-1rid 7839 ax-0id 7840 ax-rnegex 7841 ax-precex 7842 ax-cnre 7843 ax-pre-ltirr 7844 ax-pre-ltwlin 7845 ax-pre-lttrn 7846 ax-pre-apti 7847 ax-pre-ltadd 7848 ax-pre-mulgt0 7849 ax-pre-mulext 7850 ax-arch 7851 ax-caucvg 7852 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4253 df-po 4256 df-iso 4257 df-iord 4326 df-on 4328 df-ilim 4329 df-suc 4331 df-iom 4550 df-xp 4592 df-rel 4593 df-cnv 4594 df-co 4595 df-dm 4596 df-rn 4597 df-res 4598 df-ima 4599 df-iota 5135 df-fun 5172 df-fn 5173 df-f 5174 df-f1 5175 df-fo 5176 df-f1o 5177 df-fv 5178 df-isom 5179 df-riota 5780 df-ov 5827 df-oprab 5828 df-mpo 5829 df-1st 6088 df-2nd 6089 df-recs 6252 df-irdg 6317 df-frec 6338 df-1o 6363 df-oadd 6367 df-er 6480 df-en 6686 df-dom 6687 df-fin 6688 df-pnf 7914 df-mnf 7915 df-xr 7916 df-ltxr 7917 df-le 7918 df-sub 8048 df-neg 8049 df-reap 8450 df-ap 8457 df-div 8546 df-inn 8834 df-2 8892 df-3 8893 df-4 8894 df-n0 9091 df-z 9168 df-uz 9440 df-q 9529 df-rp 9561 df-fz 9913 df-fzo 10042 df-seqfrec 10345 df-exp 10419 df-ihash 10650 df-cj 10742 df-re 10743 df-im 10744 df-rsqrt 10898 df-abs 10899 df-clim 11176 df-proddc 11448 |
This theorem is referenced by: fproddivap 11527 |
Copyright terms: Public domain | W3C validator |