Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fprodrec | Unicode version |
Description: The finite product of reciprocals is the reciprocal of the product. (Contributed by Jim Kingdon, 28-Aug-2024.) |
Ref | Expression |
---|---|
fprodrec.a | |
fprodrec.ccl | |
fprodrec.cap | # |
Ref | Expression |
---|---|
fprodrec |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prodeq1 11494 | . . 3 | |
2 | prodeq1 11494 | . . . 4 | |
3 | 2 | oveq2d 5858 | . . 3 |
4 | 1, 3 | eqeq12d 2180 | . 2 |
5 | prodeq1 11494 | . . 3 | |
6 | prodeq1 11494 | . . . 4 | |
7 | 6 | oveq2d 5858 | . . 3 |
8 | 5, 7 | eqeq12d 2180 | . 2 |
9 | prodeq1 11494 | . . 3 | |
10 | prodeq1 11494 | . . . 4 | |
11 | 10 | oveq2d 5858 | . . 3 |
12 | 9, 11 | eqeq12d 2180 | . 2 |
13 | prodeq1 11494 | . . 3 | |
14 | prodeq1 11494 | . . . 4 | |
15 | 14 | oveq2d 5858 | . . 3 |
16 | 13, 15 | eqeq12d 2180 | . 2 |
17 | 1div1e1 8600 | . . . 4 | |
18 | prod0 11526 | . . . . 5 | |
19 | 18 | oveq2i 5853 | . . . 4 |
20 | prod0 11526 | . . . 4 | |
21 | 17, 19, 20 | 3eqtr4ri 2197 | . . 3 |
22 | 21 | a1i 9 | . 2 |
23 | simpr 109 | . . . . . 6 | |
24 | 23 | oveq1d 5857 | . . . . 5 |
25 | 1cnd 7915 | . . . . . . 7 | |
26 | simplr 520 | . . . . . . . . 9 | |
27 | simplll 523 | . . . . . . . . . 10 | |
28 | simplrl 525 | . . . . . . . . . . 11 | |
29 | simpr 109 | . . . . . . . . . . 11 | |
30 | 28, 29 | sseldd 3143 | . . . . . . . . . 10 |
31 | fprodrec.ccl | . . . . . . . . . 10 | |
32 | 27, 30, 31 | syl2anc 409 | . . . . . . . . 9 |
33 | 26, 32 | fprodcl 11548 | . . . . . . . 8 |
34 | 33 | adantr 274 | . . . . . . 7 |
35 | simprr 522 | . . . . . . . . . 10 | |
36 | 35 | eldifad 3127 | . . . . . . . . 9 |
37 | 31 | ralrimiva 2539 | . . . . . . . . . 10 |
38 | 37 | ad2antrr 480 | . . . . . . . . 9 |
39 | nfcsb1v 3078 | . . . . . . . . . . 11 | |
40 | 39 | nfel1 2319 | . . . . . . . . . 10 |
41 | csbeq1a 3054 | . . . . . . . . . . 11 | |
42 | 41 | eleq1d 2235 | . . . . . . . . . 10 |
43 | 40, 42 | rspc 2824 | . . . . . . . . 9 |
44 | 36, 38, 43 | sylc 62 | . . . . . . . 8 |
45 | 44 | adantr 274 | . . . . . . 7 |
46 | fprodrec.cap | . . . . . . . . . 10 # | |
47 | 27, 30, 46 | syl2anc 409 | . . . . . . . . 9 # |
48 | 26, 32, 47 | fprodap0 11562 | . . . . . . . 8 # |
49 | 48 | adantr 274 | . . . . . . 7 # |
50 | 46 | ralrimiva 2539 | . . . . . . . . . 10 # |
51 | 50 | ad2antrr 480 | . . . . . . . . 9 # |
52 | nfcv 2308 | . . . . . . . . . . 11 # | |
53 | nfcv 2308 | . . . . . . . . . . 11 | |
54 | 39, 52, 53 | nfbr 4028 | . . . . . . . . . 10 # |
55 | 41 | breq1d 3992 | . . . . . . . . . 10 # # |
56 | 54, 55 | rspc 2824 | . . . . . . . . 9 # # |
57 | 36, 51, 56 | sylc 62 | . . . . . . . 8 # |
58 | 57 | adantr 274 | . . . . . . 7 # |
59 | 25, 34, 25, 45, 49, 58 | divmuldivapd 8728 | . . . . . 6 |
60 | 1t1e1 9009 | . . . . . . 7 | |
61 | 60 | oveq1i 5852 | . . . . . 6 |
62 | 59, 61 | eqtrdi 2215 | . . . . 5 |
63 | 24, 62 | eqtrd 2198 | . . . 4 |
64 | nfcv 2308 | . . . . . . 7 | |
65 | nfcv 2308 | . . . . . . 7 | |
66 | 64, 65, 39 | nfov 5872 | . . . . . 6 |
67 | 35 | eldifbd 3128 | . . . . . 6 |
68 | 32, 47 | recclapd 8677 | . . . . . 6 |
69 | 44, 57 | recclapd 8677 | . . . . . 6 |
70 | 41 | oveq2d 5858 | . . . . . 6 |
71 | 66, 26, 35, 67, 68, 69, 70 | fprodunsn 11545 | . . . . 5 |
72 | 71 | adantr 274 | . . . 4 |
73 | 39, 26, 35, 67, 32, 44, 41 | fprodunsn 11545 | . . . . . 6 |
74 | 73 | oveq2d 5858 | . . . . 5 |
75 | 74 | adantr 274 | . . . 4 |
76 | 63, 72, 75 | 3eqtr4d 2208 | . . 3 |
77 | 76 | ex 114 | . 2 |
78 | fprodrec.a | . 2 | |
79 | 4, 8, 12, 16, 22, 77, 78 | findcard2sd 6858 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 wral 2444 csb 3045 cdif 3113 cun 3114 wss 3116 c0 3409 csn 3576 class class class wbr 3982 (class class class)co 5842 cfn 6706 cc 7751 cc0 7753 c1 7754 cmul 7758 # cap 8479 cdiv 8568 cprod 11491 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 ax-caucvg 7873 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-isom 5197 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-frec 6359 df-1o 6384 df-oadd 6388 df-er 6501 df-en 6707 df-dom 6708 df-fin 6709 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-n0 9115 df-z 9192 df-uz 9467 df-q 9558 df-rp 9590 df-fz 9945 df-fzo 10078 df-seqfrec 10381 df-exp 10455 df-ihash 10689 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 df-clim 11220 df-proddc 11492 |
This theorem is referenced by: fproddivap 11571 |
Copyright terms: Public domain | W3C validator |