ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addlocprlem Unicode version

Theorem addlocprlem 7367
Description: Lemma for addlocpr 7368. The result, in deduction form. (Contributed by Jim Kingdon, 6-Dec-2019.)
Hypotheses
Ref Expression
addlocprlem.a  |-  ( ph  ->  A  e.  P. )
addlocprlem.b  |-  ( ph  ->  B  e.  P. )
addlocprlem.qr  |-  ( ph  ->  Q  <Q  R )
addlocprlem.p  |-  ( ph  ->  P  e.  Q. )
addlocprlem.qppr  |-  ( ph  ->  ( Q  +Q  ( P  +Q  P ) )  =  R )
addlocprlem.dlo  |-  ( ph  ->  D  e.  ( 1st `  A ) )
addlocprlem.uup  |-  ( ph  ->  U  e.  ( 2nd `  A ) )
addlocprlem.du  |-  ( ph  ->  U  <Q  ( D  +Q  P ) )
addlocprlem.elo  |-  ( ph  ->  E  e.  ( 1st `  B ) )
addlocprlem.tup  |-  ( ph  ->  T  e.  ( 2nd `  B ) )
addlocprlem.et  |-  ( ph  ->  T  <Q  ( E  +Q  P ) )
Assertion
Ref Expression
addlocprlem  |-  ( ph  ->  ( Q  e.  ( 1st `  ( A  +P.  B ) )  \/  R  e.  ( 2nd `  ( A  +P.  B ) ) ) )

Proof of Theorem addlocprlem
StepHypRef Expression
1 addlocprlem.qr . . . 4  |-  ( ph  ->  Q  <Q  R )
2 ltrelnq 7197 . . . . . 6  |-  <Q  C_  ( Q.  X.  Q. )
32brel 4599 . . . . 5  |-  ( Q 
<Q  R  ->  ( Q  e.  Q.  /\  R  e.  Q. ) )
43simpld 111 . . . 4  |-  ( Q 
<Q  R  ->  Q  e. 
Q. )
51, 4syl 14 . . 3  |-  ( ph  ->  Q  e.  Q. )
6 addlocprlem.a . . . . . 6  |-  ( ph  ->  A  e.  P. )
7 prop 7307 . . . . . 6  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
86, 7syl 14 . . . . 5  |-  ( ph  -> 
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P. )
9 addlocprlem.dlo . . . . 5  |-  ( ph  ->  D  e.  ( 1st `  A ) )
10 elprnql 7313 . . . . 5  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  D  e.  ( 1st `  A ) )  ->  D  e.  Q. )
118, 9, 10syl2anc 409 . . . 4  |-  ( ph  ->  D  e.  Q. )
12 addlocprlem.b . . . . . 6  |-  ( ph  ->  B  e.  P. )
13 prop 7307 . . . . . 6  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
1412, 13syl 14 . . . . 5  |-  ( ph  -> 
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P. )
15 addlocprlem.elo . . . . 5  |-  ( ph  ->  E  e.  ( 1st `  B ) )
16 elprnql 7313 . . . . 5  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  E  e.  ( 1st `  B ) )  ->  E  e.  Q. )
1714, 15, 16syl2anc 409 . . . 4  |-  ( ph  ->  E  e.  Q. )
18 addclnq 7207 . . . 4  |-  ( ( D  e.  Q.  /\  E  e.  Q. )  ->  ( D  +Q  E
)  e.  Q. )
1911, 17, 18syl2anc 409 . . 3  |-  ( ph  ->  ( D  +Q  E
)  e.  Q. )
20 nqtri3or 7228 . . 3  |-  ( ( Q  e.  Q.  /\  ( D  +Q  E
)  e.  Q. )  ->  ( Q  <Q  ( D  +Q  E )  \/  Q  =  ( D  +Q  E )  \/  ( D  +Q  E
)  <Q  Q ) )
215, 19, 20syl2anc 409 . 2  |-  ( ph  ->  ( Q  <Q  ( D  +Q  E )  \/  Q  =  ( D  +Q  E )  \/  ( D  +Q  E
)  <Q  Q ) )
22 addlocprlem.p . . . . 5  |-  ( ph  ->  P  e.  Q. )
23 addlocprlem.qppr . . . . 5  |-  ( ph  ->  ( Q  +Q  ( P  +Q  P ) )  =  R )
24 addlocprlem.uup . . . . 5  |-  ( ph  ->  U  e.  ( 2nd `  A ) )
25 addlocprlem.du . . . . 5  |-  ( ph  ->  U  <Q  ( D  +Q  P ) )
26 addlocprlem.tup . . . . 5  |-  ( ph  ->  T  e.  ( 2nd `  B ) )
27 addlocprlem.et . . . . 5  |-  ( ph  ->  T  <Q  ( E  +Q  P ) )
286, 12, 1, 22, 23, 9, 24, 25, 15, 26, 27addlocprlemlt 7363 . . . 4  |-  ( ph  ->  ( Q  <Q  ( D  +Q  E )  ->  Q  e.  ( 1st `  ( A  +P.  B
) ) ) )
29 orc 702 . . . 4  |-  ( Q  e.  ( 1st `  ( A  +P.  B ) )  ->  ( Q  e.  ( 1st `  ( A  +P.  B ) )  \/  R  e.  ( 2nd `  ( A  +P.  B ) ) ) )
3028, 29syl6 33 . . 3  |-  ( ph  ->  ( Q  <Q  ( D  +Q  E )  -> 
( Q  e.  ( 1st `  ( A  +P.  B ) )  \/  R  e.  ( 2nd `  ( A  +P.  B ) ) ) ) )
316, 12, 1, 22, 23, 9, 24, 25, 15, 26, 27addlocprlemeq 7365 . . . 4  |-  ( ph  ->  ( Q  =  ( D  +Q  E )  ->  R  e.  ( 2nd `  ( A  +P.  B ) ) ) )
32 olc 701 . . . 4  |-  ( R  e.  ( 2nd `  ( A  +P.  B ) )  ->  ( Q  e.  ( 1st `  ( A  +P.  B ) )  \/  R  e.  ( 2nd `  ( A  +P.  B ) ) ) )
3331, 32syl6 33 . . 3  |-  ( ph  ->  ( Q  =  ( D  +Q  E )  ->  ( Q  e.  ( 1st `  ( A  +P.  B ) )  \/  R  e.  ( 2nd `  ( A  +P.  B ) ) ) ) )
346, 12, 1, 22, 23, 9, 24, 25, 15, 26, 27addlocprlemgt 7366 . . . 4  |-  ( ph  ->  ( ( D  +Q  E )  <Q  Q  ->  R  e.  ( 2nd `  ( A  +P.  B
) ) ) )
3534, 32syl6 33 . . 3  |-  ( ph  ->  ( ( D  +Q  E )  <Q  Q  -> 
( Q  e.  ( 1st `  ( A  +P.  B ) )  \/  R  e.  ( 2nd `  ( A  +P.  B ) ) ) ) )
3630, 33, 353jaod 1283 . 2  |-  ( ph  ->  ( ( Q  <Q  ( D  +Q  E )  \/  Q  =  ( D  +Q  E )  \/  ( D  +Q  E )  <Q  Q )  ->  ( Q  e.  ( 1st `  ( A  +P.  B ) )  \/  R  e.  ( 2nd `  ( A  +P.  B ) ) ) ) )
3721, 36mpd 13 1  |-  ( ph  ->  ( Q  e.  ( 1st `  ( A  +P.  B ) )  \/  R  e.  ( 2nd `  ( A  +P.  B ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 698    \/ w3o 962    = wceq 1332    e. wcel 1481   <.cop 3535   class class class wbr 3937   ` cfv 5131  (class class class)co 5782   1stc1st 6044   2ndc2nd 6045   Q.cnq 7112    +Q cplq 7114    <Q cltq 7117   P.cnp 7123    +P. cpp 7125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-inp 7298  df-iplp 7300
This theorem is referenced by:  addlocpr  7368
  Copyright terms: Public domain W3C validator