ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addlocprlem Unicode version

Theorem addlocprlem 7346
Description: Lemma for addlocpr 7347. The result, in deduction form. (Contributed by Jim Kingdon, 6-Dec-2019.)
Hypotheses
Ref Expression
addlocprlem.a  |-  ( ph  ->  A  e.  P. )
addlocprlem.b  |-  ( ph  ->  B  e.  P. )
addlocprlem.qr  |-  ( ph  ->  Q  <Q  R )
addlocprlem.p  |-  ( ph  ->  P  e.  Q. )
addlocprlem.qppr  |-  ( ph  ->  ( Q  +Q  ( P  +Q  P ) )  =  R )
addlocprlem.dlo  |-  ( ph  ->  D  e.  ( 1st `  A ) )
addlocprlem.uup  |-  ( ph  ->  U  e.  ( 2nd `  A ) )
addlocprlem.du  |-  ( ph  ->  U  <Q  ( D  +Q  P ) )
addlocprlem.elo  |-  ( ph  ->  E  e.  ( 1st `  B ) )
addlocprlem.tup  |-  ( ph  ->  T  e.  ( 2nd `  B ) )
addlocprlem.et  |-  ( ph  ->  T  <Q  ( E  +Q  P ) )
Assertion
Ref Expression
addlocprlem  |-  ( ph  ->  ( Q  e.  ( 1st `  ( A  +P.  B ) )  \/  R  e.  ( 2nd `  ( A  +P.  B ) ) ) )

Proof of Theorem addlocprlem
StepHypRef Expression
1 addlocprlem.qr . . . 4  |-  ( ph  ->  Q  <Q  R )
2 ltrelnq 7176 . . . . . 6  |-  <Q  C_  ( Q.  X.  Q. )
32brel 4591 . . . . 5  |-  ( Q 
<Q  R  ->  ( Q  e.  Q.  /\  R  e.  Q. ) )
43simpld 111 . . . 4  |-  ( Q 
<Q  R  ->  Q  e. 
Q. )
51, 4syl 14 . . 3  |-  ( ph  ->  Q  e.  Q. )
6 addlocprlem.a . . . . . 6  |-  ( ph  ->  A  e.  P. )
7 prop 7286 . . . . . 6  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
86, 7syl 14 . . . . 5  |-  ( ph  -> 
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P. )
9 addlocprlem.dlo . . . . 5  |-  ( ph  ->  D  e.  ( 1st `  A ) )
10 elprnql 7292 . . . . 5  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  D  e.  ( 1st `  A ) )  ->  D  e.  Q. )
118, 9, 10syl2anc 408 . . . 4  |-  ( ph  ->  D  e.  Q. )
12 addlocprlem.b . . . . . 6  |-  ( ph  ->  B  e.  P. )
13 prop 7286 . . . . . 6  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
1412, 13syl 14 . . . . 5  |-  ( ph  -> 
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P. )
15 addlocprlem.elo . . . . 5  |-  ( ph  ->  E  e.  ( 1st `  B ) )
16 elprnql 7292 . . . . 5  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  E  e.  ( 1st `  B ) )  ->  E  e.  Q. )
1714, 15, 16syl2anc 408 . . . 4  |-  ( ph  ->  E  e.  Q. )
18 addclnq 7186 . . . 4  |-  ( ( D  e.  Q.  /\  E  e.  Q. )  ->  ( D  +Q  E
)  e.  Q. )
1911, 17, 18syl2anc 408 . . 3  |-  ( ph  ->  ( D  +Q  E
)  e.  Q. )
20 nqtri3or 7207 . . 3  |-  ( ( Q  e.  Q.  /\  ( D  +Q  E
)  e.  Q. )  ->  ( Q  <Q  ( D  +Q  E )  \/  Q  =  ( D  +Q  E )  \/  ( D  +Q  E
)  <Q  Q ) )
215, 19, 20syl2anc 408 . 2  |-  ( ph  ->  ( Q  <Q  ( D  +Q  E )  \/  Q  =  ( D  +Q  E )  \/  ( D  +Q  E
)  <Q  Q ) )
22 addlocprlem.p . . . . 5  |-  ( ph  ->  P  e.  Q. )
23 addlocprlem.qppr . . . . 5  |-  ( ph  ->  ( Q  +Q  ( P  +Q  P ) )  =  R )
24 addlocprlem.uup . . . . 5  |-  ( ph  ->  U  e.  ( 2nd `  A ) )
25 addlocprlem.du . . . . 5  |-  ( ph  ->  U  <Q  ( D  +Q  P ) )
26 addlocprlem.tup . . . . 5  |-  ( ph  ->  T  e.  ( 2nd `  B ) )
27 addlocprlem.et . . . . 5  |-  ( ph  ->  T  <Q  ( E  +Q  P ) )
286, 12, 1, 22, 23, 9, 24, 25, 15, 26, 27addlocprlemlt 7342 . . . 4  |-  ( ph  ->  ( Q  <Q  ( D  +Q  E )  ->  Q  e.  ( 1st `  ( A  +P.  B
) ) ) )
29 orc 701 . . . 4  |-  ( Q  e.  ( 1st `  ( A  +P.  B ) )  ->  ( Q  e.  ( 1st `  ( A  +P.  B ) )  \/  R  e.  ( 2nd `  ( A  +P.  B ) ) ) )
3028, 29syl6 33 . . 3  |-  ( ph  ->  ( Q  <Q  ( D  +Q  E )  -> 
( Q  e.  ( 1st `  ( A  +P.  B ) )  \/  R  e.  ( 2nd `  ( A  +P.  B ) ) ) ) )
316, 12, 1, 22, 23, 9, 24, 25, 15, 26, 27addlocprlemeq 7344 . . . 4  |-  ( ph  ->  ( Q  =  ( D  +Q  E )  ->  R  e.  ( 2nd `  ( A  +P.  B ) ) ) )
32 olc 700 . . . 4  |-  ( R  e.  ( 2nd `  ( A  +P.  B ) )  ->  ( Q  e.  ( 1st `  ( A  +P.  B ) )  \/  R  e.  ( 2nd `  ( A  +P.  B ) ) ) )
3331, 32syl6 33 . . 3  |-  ( ph  ->  ( Q  =  ( D  +Q  E )  ->  ( Q  e.  ( 1st `  ( A  +P.  B ) )  \/  R  e.  ( 2nd `  ( A  +P.  B ) ) ) ) )
346, 12, 1, 22, 23, 9, 24, 25, 15, 26, 27addlocprlemgt 7345 . . . 4  |-  ( ph  ->  ( ( D  +Q  E )  <Q  Q  ->  R  e.  ( 2nd `  ( A  +P.  B
) ) ) )
3534, 32syl6 33 . . 3  |-  ( ph  ->  ( ( D  +Q  E )  <Q  Q  -> 
( Q  e.  ( 1st `  ( A  +P.  B ) )  \/  R  e.  ( 2nd `  ( A  +P.  B ) ) ) ) )
3630, 33, 353jaod 1282 . 2  |-  ( ph  ->  ( ( Q  <Q  ( D  +Q  E )  \/  Q  =  ( D  +Q  E )  \/  ( D  +Q  E )  <Q  Q )  ->  ( Q  e.  ( 1st `  ( A  +P.  B ) )  \/  R  e.  ( 2nd `  ( A  +P.  B ) ) ) ) )
3721, 36mpd 13 1  |-  ( ph  ->  ( Q  e.  ( 1st `  ( A  +P.  B ) )  \/  R  e.  ( 2nd `  ( A  +P.  B ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 697    \/ w3o 961    = wceq 1331    e. wcel 1480   <.cop 3530   class class class wbr 3929   ` cfv 5123  (class class class)co 5774   1stc1st 6036   2ndc2nd 6037   Q.cnq 7091    +Q cplq 7093    <Q cltq 7096   P.cnp 7102    +P. cpp 7104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7115  df-pli 7116  df-mi 7117  df-lti 7118  df-plpq 7155  df-mpq 7156  df-enq 7158  df-nqqs 7159  df-plqqs 7160  df-mqqs 7161  df-1nqqs 7162  df-rq 7163  df-ltnqqs 7164  df-inp 7277  df-iplp 7279
This theorem is referenced by:  addlocpr  7347
  Copyright terms: Public domain W3C validator