ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addlocprlem Unicode version

Theorem addlocprlem 7497
Description: Lemma for addlocpr 7498. The result, in deduction form. (Contributed by Jim Kingdon, 6-Dec-2019.)
Hypotheses
Ref Expression
addlocprlem.a  |-  ( ph  ->  A  e.  P. )
addlocprlem.b  |-  ( ph  ->  B  e.  P. )
addlocprlem.qr  |-  ( ph  ->  Q  <Q  R )
addlocprlem.p  |-  ( ph  ->  P  e.  Q. )
addlocprlem.qppr  |-  ( ph  ->  ( Q  +Q  ( P  +Q  P ) )  =  R )
addlocprlem.dlo  |-  ( ph  ->  D  e.  ( 1st `  A ) )
addlocprlem.uup  |-  ( ph  ->  U  e.  ( 2nd `  A ) )
addlocprlem.du  |-  ( ph  ->  U  <Q  ( D  +Q  P ) )
addlocprlem.elo  |-  ( ph  ->  E  e.  ( 1st `  B ) )
addlocprlem.tup  |-  ( ph  ->  T  e.  ( 2nd `  B ) )
addlocprlem.et  |-  ( ph  ->  T  <Q  ( E  +Q  P ) )
Assertion
Ref Expression
addlocprlem  |-  ( ph  ->  ( Q  e.  ( 1st `  ( A  +P.  B ) )  \/  R  e.  ( 2nd `  ( A  +P.  B ) ) ) )

Proof of Theorem addlocprlem
StepHypRef Expression
1 addlocprlem.qr . . . 4  |-  ( ph  ->  Q  <Q  R )
2 ltrelnq 7327 . . . . . 6  |-  <Q  C_  ( Q.  X.  Q. )
32brel 4663 . . . . 5  |-  ( Q 
<Q  R  ->  ( Q  e.  Q.  /\  R  e.  Q. ) )
43simpld 111 . . . 4  |-  ( Q 
<Q  R  ->  Q  e. 
Q. )
51, 4syl 14 . . 3  |-  ( ph  ->  Q  e.  Q. )
6 addlocprlem.a . . . . . 6  |-  ( ph  ->  A  e.  P. )
7 prop 7437 . . . . . 6  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
86, 7syl 14 . . . . 5  |-  ( ph  -> 
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P. )
9 addlocprlem.dlo . . . . 5  |-  ( ph  ->  D  e.  ( 1st `  A ) )
10 elprnql 7443 . . . . 5  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  D  e.  ( 1st `  A ) )  ->  D  e.  Q. )
118, 9, 10syl2anc 409 . . . 4  |-  ( ph  ->  D  e.  Q. )
12 addlocprlem.b . . . . . 6  |-  ( ph  ->  B  e.  P. )
13 prop 7437 . . . . . 6  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
1412, 13syl 14 . . . . 5  |-  ( ph  -> 
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P. )
15 addlocprlem.elo . . . . 5  |-  ( ph  ->  E  e.  ( 1st `  B ) )
16 elprnql 7443 . . . . 5  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  E  e.  ( 1st `  B ) )  ->  E  e.  Q. )
1714, 15, 16syl2anc 409 . . . 4  |-  ( ph  ->  E  e.  Q. )
18 addclnq 7337 . . . 4  |-  ( ( D  e.  Q.  /\  E  e.  Q. )  ->  ( D  +Q  E
)  e.  Q. )
1911, 17, 18syl2anc 409 . . 3  |-  ( ph  ->  ( D  +Q  E
)  e.  Q. )
20 nqtri3or 7358 . . 3  |-  ( ( Q  e.  Q.  /\  ( D  +Q  E
)  e.  Q. )  ->  ( Q  <Q  ( D  +Q  E )  \/  Q  =  ( D  +Q  E )  \/  ( D  +Q  E
)  <Q  Q ) )
215, 19, 20syl2anc 409 . 2  |-  ( ph  ->  ( Q  <Q  ( D  +Q  E )  \/  Q  =  ( D  +Q  E )  \/  ( D  +Q  E
)  <Q  Q ) )
22 addlocprlem.p . . . . 5  |-  ( ph  ->  P  e.  Q. )
23 addlocprlem.qppr . . . . 5  |-  ( ph  ->  ( Q  +Q  ( P  +Q  P ) )  =  R )
24 addlocprlem.uup . . . . 5  |-  ( ph  ->  U  e.  ( 2nd `  A ) )
25 addlocprlem.du . . . . 5  |-  ( ph  ->  U  <Q  ( D  +Q  P ) )
26 addlocprlem.tup . . . . 5  |-  ( ph  ->  T  e.  ( 2nd `  B ) )
27 addlocprlem.et . . . . 5  |-  ( ph  ->  T  <Q  ( E  +Q  P ) )
286, 12, 1, 22, 23, 9, 24, 25, 15, 26, 27addlocprlemlt 7493 . . . 4  |-  ( ph  ->  ( Q  <Q  ( D  +Q  E )  ->  Q  e.  ( 1st `  ( A  +P.  B
) ) ) )
29 orc 707 . . . 4  |-  ( Q  e.  ( 1st `  ( A  +P.  B ) )  ->  ( Q  e.  ( 1st `  ( A  +P.  B ) )  \/  R  e.  ( 2nd `  ( A  +P.  B ) ) ) )
3028, 29syl6 33 . . 3  |-  ( ph  ->  ( Q  <Q  ( D  +Q  E )  -> 
( Q  e.  ( 1st `  ( A  +P.  B ) )  \/  R  e.  ( 2nd `  ( A  +P.  B ) ) ) ) )
316, 12, 1, 22, 23, 9, 24, 25, 15, 26, 27addlocprlemeq 7495 . . . 4  |-  ( ph  ->  ( Q  =  ( D  +Q  E )  ->  R  e.  ( 2nd `  ( A  +P.  B ) ) ) )
32 olc 706 . . . 4  |-  ( R  e.  ( 2nd `  ( A  +P.  B ) )  ->  ( Q  e.  ( 1st `  ( A  +P.  B ) )  \/  R  e.  ( 2nd `  ( A  +P.  B ) ) ) )
3331, 32syl6 33 . . 3  |-  ( ph  ->  ( Q  =  ( D  +Q  E )  ->  ( Q  e.  ( 1st `  ( A  +P.  B ) )  \/  R  e.  ( 2nd `  ( A  +P.  B ) ) ) ) )
346, 12, 1, 22, 23, 9, 24, 25, 15, 26, 27addlocprlemgt 7496 . . . 4  |-  ( ph  ->  ( ( D  +Q  E )  <Q  Q  ->  R  e.  ( 2nd `  ( A  +P.  B
) ) ) )
3534, 32syl6 33 . . 3  |-  ( ph  ->  ( ( D  +Q  E )  <Q  Q  -> 
( Q  e.  ( 1st `  ( A  +P.  B ) )  \/  R  e.  ( 2nd `  ( A  +P.  B ) ) ) ) )
3630, 33, 353jaod 1299 . 2  |-  ( ph  ->  ( ( Q  <Q  ( D  +Q  E )  \/  Q  =  ( D  +Q  E )  \/  ( D  +Q  E )  <Q  Q )  ->  ( Q  e.  ( 1st `  ( A  +P.  B ) )  \/  R  e.  ( 2nd `  ( A  +P.  B ) ) ) ) )
3721, 36mpd 13 1  |-  ( ph  ->  ( Q  e.  ( 1st `  ( A  +P.  B ) )  \/  R  e.  ( 2nd `  ( A  +P.  B ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 703    \/ w3o 972    = wceq 1348    e. wcel 2141   <.cop 3586   class class class wbr 3989   ` cfv 5198  (class class class)co 5853   1stc1st 6117   2ndc2nd 6118   Q.cnq 7242    +Q cplq 7244    <Q cltq 7247   P.cnp 7253    +P. cpp 7255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315  df-inp 7428  df-iplp 7430
This theorem is referenced by:  addlocpr  7498
  Copyright terms: Public domain W3C validator