ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qdceq Unicode version

Theorem qdceq 10283
Description: Equality of rationals is decidable. (Contributed by Jim Kingdon, 11-Oct-2021.)
Assertion
Ref Expression
qdceq  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  -> DECID  A  =  B )

Proof of Theorem qdceq
StepHypRef Expression
1 qtri3or 10279 . 2  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  <  B  \/  A  =  B  \/  B  <  A ) )
2 qre 9661 . . . 4  |-  ( A  e.  QQ  ->  A  e.  RR )
3 ltne 8077 . . . . . . . 8  |-  ( ( A  e.  RR  /\  A  <  B )  ->  B  =/=  A )
43necomd 2446 . . . . . . 7  |-  ( ( A  e.  RR  /\  A  <  B )  ->  A  =/=  B )
5 olc 712 . . . . . . . 8  |-  ( A  =/=  B  ->  ( A  =  B  \/  A  =/=  B ) )
6 dcne 2371 . . . . . . . 8  |-  (DECID  A  =  B  <->  ( A  =  B  \/  A  =/= 
B ) )
75, 6sylibr 134 . . . . . . 7  |-  ( A  =/=  B  -> DECID  A  =  B
)
84, 7syl 14 . . . . . 6  |-  ( ( A  e.  RR  /\  A  <  B )  -> DECID  A  =  B )
98ex 115 . . . . 5  |-  ( A  e.  RR  ->  ( A  <  B  -> DECID  A  =  B
) )
109adantr 276 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  QQ )  ->  ( A  <  B  -> DECID  A  =  B ) )
112, 10sylan 283 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  <  B  -> DECID  A  =  B ) )
12 orc 713 . . . . 5  |-  ( A  =  B  ->  ( A  =  B  \/  A  =/=  B ) )
1312, 6sylibr 134 . . . 4  |-  ( A  =  B  -> DECID  A  =  B
)
1413a1i 9 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  =  B  -> DECID 
A  =  B ) )
15 qre 9661 . . . . 5  |-  ( B  e.  QQ  ->  B  e.  RR )
16 ltne 8077 . . . . . . 7  |-  ( ( B  e.  RR  /\  B  <  A )  ->  A  =/=  B )
1716, 7syl 14 . . . . . 6  |-  ( ( B  e.  RR  /\  B  <  A )  -> DECID  A  =  B )
1817ex 115 . . . . 5  |-  ( B  e.  RR  ->  ( B  <  A  -> DECID  A  =  B
) )
1915, 18syl 14 . . . 4  |-  ( B  e.  QQ  ->  ( B  <  A  -> DECID  A  =  B
) )
2019adantl 277 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( B  <  A  -> DECID  A  =  B ) )
2111, 14, 203jaod 1315 . 2  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( ( A  < 
B  \/  A  =  B  \/  B  < 
A )  -> DECID  A  =  B
) )
221, 21mpd 13 1  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  -> DECID  A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709  DECID wdc 835    \/ w3o 979    = wceq 1364    e. wcel 2160    =/= wne 2360   class class class wbr 4021   RRcr 7845    < clt 8027   QQcq 9655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4139  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-cnex 7937  ax-resscn 7938  ax-1cn 7939  ax-1re 7940  ax-icn 7941  ax-addcl 7942  ax-addrcl 7943  ax-mulcl 7944  ax-mulrcl 7945  ax-addcom 7946  ax-mulcom 7947  ax-addass 7948  ax-mulass 7949  ax-distr 7950  ax-i2m1 7951  ax-0lt1 7952  ax-1rid 7953  ax-0id 7954  ax-rnegex 7955  ax-precex 7956  ax-cnre 7957  ax-pre-ltirr 7958  ax-pre-ltwlin 7959  ax-pre-lttrn 7960  ax-pre-apti 7961  ax-pre-ltadd 7962  ax-pre-mulgt0 7963  ax-pre-mulext 7964
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-int 3863  df-iun 3906  df-br 4022  df-opab 4083  df-mpt 4084  df-id 4314  df-po 4317  df-iso 4318  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-f 5242  df-fv 5246  df-riota 5855  df-ov 5903  df-oprab 5904  df-mpo 5905  df-1st 6169  df-2nd 6170  df-pnf 8029  df-mnf 8030  df-xr 8031  df-ltxr 8032  df-le 8033  df-sub 8165  df-neg 8166  df-reap 8567  df-ap 8574  df-div 8665  df-inn 8955  df-n0 9212  df-z 9289  df-q 9656  df-rp 9690
This theorem is referenced by:  flqeqceilz  10355  pcxcl  12354  pcxqcl  12355  pcaddlem  12382  pcadd  12383  qexpz  12395  qnnen  12493  apdifflemr  15283
  Copyright terms: Public domain W3C validator