ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qdceq Unicode version

Theorem qdceq 10351
Description: Equality of rationals is decidable. (Contributed by Jim Kingdon, 11-Oct-2021.)
Assertion
Ref Expression
qdceq  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  -> DECID  A  =  B )

Proof of Theorem qdceq
StepHypRef Expression
1 qtri3or 10347 . 2  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  <  B  \/  A  =  B  \/  B  <  A ) )
2 qre 9716 . . . 4  |-  ( A  e.  QQ  ->  A  e.  RR )
3 ltne 8128 . . . . . . . 8  |-  ( ( A  e.  RR  /\  A  <  B )  ->  B  =/=  A )
43necomd 2453 . . . . . . 7  |-  ( ( A  e.  RR  /\  A  <  B )  ->  A  =/=  B )
5 olc 712 . . . . . . . 8  |-  ( A  =/=  B  ->  ( A  =  B  \/  A  =/=  B ) )
6 dcne 2378 . . . . . . . 8  |-  (DECID  A  =  B  <->  ( A  =  B  \/  A  =/= 
B ) )
75, 6sylibr 134 . . . . . . 7  |-  ( A  =/=  B  -> DECID  A  =  B
)
84, 7syl 14 . . . . . 6  |-  ( ( A  e.  RR  /\  A  <  B )  -> DECID  A  =  B )
98ex 115 . . . . 5  |-  ( A  e.  RR  ->  ( A  <  B  -> DECID  A  =  B
) )
109adantr 276 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  QQ )  ->  ( A  <  B  -> DECID  A  =  B ) )
112, 10sylan 283 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  <  B  -> DECID  A  =  B ) )
12 orc 713 . . . . 5  |-  ( A  =  B  ->  ( A  =  B  \/  A  =/=  B ) )
1312, 6sylibr 134 . . . 4  |-  ( A  =  B  -> DECID  A  =  B
)
1413a1i 9 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  =  B  -> DECID 
A  =  B ) )
15 qre 9716 . . . . 5  |-  ( B  e.  QQ  ->  B  e.  RR )
16 ltne 8128 . . . . . . 7  |-  ( ( B  e.  RR  /\  B  <  A )  ->  A  =/=  B )
1716, 7syl 14 . . . . . 6  |-  ( ( B  e.  RR  /\  B  <  A )  -> DECID  A  =  B )
1817ex 115 . . . . 5  |-  ( B  e.  RR  ->  ( B  <  A  -> DECID  A  =  B
) )
1915, 18syl 14 . . . 4  |-  ( B  e.  QQ  ->  ( B  <  A  -> DECID  A  =  B
) )
2019adantl 277 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( B  <  A  -> DECID  A  =  B ) )
2111, 14, 203jaod 1315 . 2  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( ( A  < 
B  \/  A  =  B  \/  B  < 
A )  -> DECID  A  =  B
) )
221, 21mpd 13 1  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  -> DECID  A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709  DECID wdc 835    \/ w3o 979    = wceq 1364    e. wcel 2167    =/= wne 2367   class class class wbr 4034   RRcr 7895    < clt 8078   QQcq 9710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-n0 9267  df-z 9344  df-q 9711  df-rp 9746
This theorem is referenced by:  flqeqceilz  10427  bitsinv1lem  12143  pcxcl  12505  pcxqcl  12506  pcaddlem  12533  pcadd  12534  qexpz  12546  qnnen  12673  apdifflemr  15778
  Copyright terms: Public domain W3C validator