ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zlelttric Unicode version

Theorem zlelttric 9371
Description: Trichotomy law. (Contributed by Jim Kingdon, 17-Apr-2020.)
Assertion
Ref Expression
zlelttric  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <_  B  \/  B  <  A ) )

Proof of Theorem zlelttric
StepHypRef Expression
1 zre 9330 . . 3  |-  ( A  e.  ZZ  ->  A  e.  RR )
2 zre 9330 . . 3  |-  ( B  e.  ZZ  ->  B  e.  RR )
31, 2anim12i 338 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  e.  RR  /\  B  e.  RR ) )
4 ztri3or 9369 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <  B  \/  A  =  B  \/  B  <  A ) )
5 ltle 8114 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  A  <_  B )
)
6 orc 713 . . . 4  |-  ( A  <_  B  ->  ( A  <_  B  \/  B  <  A ) )
75, 6syl6 33 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  ( A  <_  B  \/  B  <  A ) ) )
8 eqle 8118 . . . . . 6  |-  ( ( A  e.  RR  /\  A  =  B )  ->  A  <_  B )
98ex 115 . . . . 5  |-  ( A  e.  RR  ->  ( A  =  B  ->  A  <_  B ) )
109adantr 276 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B  ->  A  <_  B
) )
1110, 6syl6 33 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B  ->  ( A  <_  B  \/  B  <  A ) ) )
12 olc 712 . . . 4  |-  ( B  <  A  ->  ( A  <_  B  \/  B  <  A ) )
1312a1i 9 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( B  <  A  ->  ( A  <_  B  \/  B  <  A ) ) )
147, 11, 133jaod 1315 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  < 
B  \/  A  =  B  \/  B  < 
A )  ->  ( A  <_  B  \/  B  <  A ) ) )
153, 4, 14sylc 62 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <_  B  \/  B  <  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    \/ w3o 979    = wceq 1364    e. wcel 2167   class class class wbr 4033   RRcr 7878    < clt 8061    <_ cle 8062   ZZcz 9326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327
This theorem is referenced by:  btwnapz  9456  eluzdc  9684  fzsplit2  10125  uzsplit  10167  fzospliti  10252  fzouzsplit  10255  faclbnd  10833  resqrexlemoverl  11186  fisumrev2  11611  dvdslelemd  12008  dvdsle  12009  isprm5lem  12309  sqrt2irrap  12348  prm23ge5  12433  dvdsprmpweqle  12506  uzdcinzz  15444
  Copyright terms: Public domain W3C validator