ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zaddcl Unicode version

Theorem zaddcl 9414
Description: Closure of addition of integers. (Contributed by NM, 9-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
zaddcl  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  +  N
)  e.  ZZ )

Proof of Theorem zaddcl
StepHypRef Expression
1 elz 9376 . . . 4  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) ) )
21simprbi 275 . . 3  |-  ( N  e.  ZZ  ->  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) )
32adantl 277 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) )
4 zcn 9379 . . . . . . 7  |-  ( M  e.  ZZ  ->  M  e.  CC )
54adantr 276 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  CC )
65addridd 8223 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  +  0 )  =  M )
7 simpl 109 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  ZZ )
86, 7eqeltrd 2282 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  +  0 )  e.  ZZ )
9 oveq2 5954 . . . . 5  |-  ( N  =  0  ->  ( M  +  N )  =  ( M  + 
0 ) )
109eleq1d 2274 . . . 4  |-  ( N  =  0  ->  (
( M  +  N
)  e.  ZZ  <->  ( M  +  0 )  e.  ZZ ) )
118, 10syl5ibrcom 157 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  =  0  ->  ( M  +  N )  e.  ZZ ) )
12 zaddcllempos 9411 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  +  N
)  e.  ZZ )
1312ex 115 . . . 4  |-  ( M  e.  ZZ  ->  ( N  e.  NN  ->  ( M  +  N )  e.  ZZ ) )
1413adantr 276 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  NN  ->  ( M  +  N
)  e.  ZZ ) )
15 zre 9378 . . . 4  |-  ( N  e.  ZZ  ->  N  e.  RR )
16 zaddcllemneg 9413 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  RR  /\  -u N  e.  NN )  ->  ( M  +  N )  e.  ZZ )
17163expia 1208 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( -u N  e.  NN  ->  ( M  +  N )  e.  ZZ ) )
1815, 17sylan2 286 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -u N  e.  NN  ->  ( M  +  N )  e.  ZZ ) )
1911, 14, 183jaod 1317 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN )  ->  ( M  +  N )  e.  ZZ ) )
203, 19mpd 13 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  +  N
)  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ w3o 980    = wceq 1373    e. wcel 2176  (class class class)co 5946   CCcc 7925   RRcr 7926   0cc0 7927    + caddc 7930   -ucneg 8246   NNcn 9038   ZZcz 9374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-opab 4107  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-iota 5233  df-fun 5274  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-inn 9039  df-n0 9298  df-z 9375
This theorem is referenced by:  zsubcl  9415  zrevaddcl  9425  zdivadd  9464  zaddcld  9501  eluzaddi  9677  eluzsubi  9678  eluzadd  9679  nn0pzuz  9710  fzen  10167  fzaddel  10183  fzrev3  10211  fzrevral3  10231  elfzmlbp  10256  fzoaddel  10318  zpnn0elfzo  10338  elfzomelpfzo  10362  fzoshftral  10369  ccatsymb  11061  ccatval21sw  11064  climshftlemg  11646  fsumzcl  11746  summodnegmod  12166  dvds2ln  12168  dvds2add  12169  dvdsadd  12180  dvdsadd2b  12184  addmodlteqALT  12203  3dvdsdec  12209  3dvds2dec  12210  opoe  12239  opeo  12241  ndvdsadd  12275  pythagtriplem9  12629  difsqpwdvds  12694  gzaddcl  12733  zsubrg  14376  zringmulg  14393  expghmap  14402  mulgghm2  14403
  Copyright terms: Public domain W3C validator