Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > zaddcl | Unicode version |
Description: Closure of addition of integers. (Contributed by NM, 9-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
Ref | Expression |
---|---|
zaddcl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elz 9189 | . . . 4 | |
2 | 1 | simprbi 273 | . . 3 |
3 | 2 | adantl 275 | . 2 |
4 | zcn 9192 | . . . . . . 7 | |
5 | 4 | adantr 274 | . . . . . 6 |
6 | 5 | addid1d 8043 | . . . . 5 |
7 | simpl 108 | . . . . 5 | |
8 | 6, 7 | eqeltrd 2242 | . . . 4 |
9 | oveq2 5849 | . . . . 5 | |
10 | 9 | eleq1d 2234 | . . . 4 |
11 | 8, 10 | syl5ibrcom 156 | . . 3 |
12 | zaddcllempos 9224 | . . . . 5 | |
13 | 12 | ex 114 | . . . 4 |
14 | 13 | adantr 274 | . . 3 |
15 | zre 9191 | . . . 4 | |
16 | zaddcllemneg 9226 | . . . . 5 | |
17 | 16 | 3expia 1195 | . . . 4 |
18 | 15, 17 | sylan2 284 | . . 3 |
19 | 11, 14, 18 | 3jaod 1294 | . 2 |
20 | 3, 19 | mpd 13 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3o 967 wceq 1343 wcel 2136 (class class class)co 5841 cc 7747 cr 7748 cc0 7749 caddc 7752 cneg 8066 cn 8853 cz 9187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-addcom 7849 ax-addass 7851 ax-distr 7853 ax-i2m1 7854 ax-0lt1 7855 ax-0id 7857 ax-rnegex 7858 ax-cnre 7860 ax-pre-ltirr 7861 ax-pre-ltwlin 7862 ax-pre-lttrn 7863 ax-pre-ltadd 7865 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-reu 2450 df-rab 2452 df-v 2727 df-sbc 2951 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-br 3982 df-opab 4043 df-id 4270 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-iota 5152 df-fun 5189 df-fv 5195 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-sub 8067 df-neg 8068 df-inn 8854 df-n0 9111 df-z 9188 |
This theorem is referenced by: zsubcl 9228 zrevaddcl 9237 zdivadd 9276 zaddcld 9313 eluzaddi 9488 eluzsubi 9489 eluzadd 9490 nn0pzuz 9521 fzen 9974 fzaddel 9990 fzrev3 10018 fzrevral3 10038 elfzmlbp 10063 fzoaddel 10123 zpnn0elfzo 10138 elfzomelpfzo 10162 fzoshftral 10169 climshftlemg 11239 fsumzcl 11339 summodnegmod 11758 dvds2ln 11760 dvds2add 11761 dvdsadd 11772 dvdsadd2b 11776 addmodlteqALT 11793 3dvdsdec 11798 3dvds2dec 11799 opoe 11828 opeo 11830 ndvdsadd 11864 pythagtriplem9 12201 difsqpwdvds 12265 gzaddcl 12303 |
Copyright terms: Public domain | W3C validator |