| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zaddcl | Unicode version | ||
| Description: Closure of addition of integers. (Contributed by NM, 9-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
| Ref | Expression |
|---|---|
| zaddcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elz 9374 |
. . . 4
| |
| 2 | 1 | simprbi 275 |
. . 3
|
| 3 | 2 | adantl 277 |
. 2
|
| 4 | zcn 9377 |
. . . . . . 7
| |
| 5 | 4 | adantr 276 |
. . . . . 6
|
| 6 | 5 | addridd 8221 |
. . . . 5
|
| 7 | simpl 109 |
. . . . 5
| |
| 8 | 6, 7 | eqeltrd 2282 |
. . . 4
|
| 9 | oveq2 5952 |
. . . . 5
| |
| 10 | 9 | eleq1d 2274 |
. . . 4
|
| 11 | 8, 10 | syl5ibrcom 157 |
. . 3
|
| 12 | zaddcllempos 9409 |
. . . . 5
| |
| 13 | 12 | ex 115 |
. . . 4
|
| 14 | 13 | adantr 276 |
. . 3
|
| 15 | zre 9376 |
. . . 4
| |
| 16 | zaddcllemneg 9411 |
. . . . 5
| |
| 17 | 16 | 3expia 1208 |
. . . 4
|
| 18 | 15, 17 | sylan2 286 |
. . 3
|
| 19 | 11, 14, 18 | 3jaod 1317 |
. 2
|
| 20 | 3, 19 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-inn 9037 df-n0 9296 df-z 9373 |
| This theorem is referenced by: zsubcl 9413 zrevaddcl 9423 zdivadd 9462 zaddcld 9499 eluzaddi 9675 eluzsubi 9676 eluzadd 9677 nn0pzuz 9708 fzen 10165 fzaddel 10181 fzrev3 10209 fzrevral3 10229 elfzmlbp 10254 fzoaddel 10316 zpnn0elfzo 10336 elfzomelpfzo 10360 fzoshftral 10367 ccatsymb 11058 ccatval21sw 11061 climshftlemg 11613 fsumzcl 11713 summodnegmod 12133 dvds2ln 12135 dvds2add 12136 dvdsadd 12147 dvdsadd2b 12151 addmodlteqALT 12170 3dvdsdec 12176 3dvds2dec 12177 opoe 12206 opeo 12208 ndvdsadd 12242 pythagtriplem9 12596 difsqpwdvds 12661 gzaddcl 12700 zsubrg 14343 zringmulg 14360 expghmap 14369 mulgghm2 14370 |
| Copyright terms: Public domain | W3C validator |