ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zaddcl Unicode version

Theorem zaddcl 9383
Description: Closure of addition of integers. (Contributed by NM, 9-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
zaddcl  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  +  N
)  e.  ZZ )

Proof of Theorem zaddcl
StepHypRef Expression
1 elz 9345 . . . 4  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) ) )
21simprbi 275 . . 3  |-  ( N  e.  ZZ  ->  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) )
32adantl 277 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) )
4 zcn 9348 . . . . . . 7  |-  ( M  e.  ZZ  ->  M  e.  CC )
54adantr 276 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  CC )
65addridd 8192 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  +  0 )  =  M )
7 simpl 109 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  ZZ )
86, 7eqeltrd 2273 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  +  0 )  e.  ZZ )
9 oveq2 5933 . . . . 5  |-  ( N  =  0  ->  ( M  +  N )  =  ( M  + 
0 ) )
109eleq1d 2265 . . . 4  |-  ( N  =  0  ->  (
( M  +  N
)  e.  ZZ  <->  ( M  +  0 )  e.  ZZ ) )
118, 10syl5ibrcom 157 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  =  0  ->  ( M  +  N )  e.  ZZ ) )
12 zaddcllempos 9380 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  +  N
)  e.  ZZ )
1312ex 115 . . . 4  |-  ( M  e.  ZZ  ->  ( N  e.  NN  ->  ( M  +  N )  e.  ZZ ) )
1413adantr 276 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  NN  ->  ( M  +  N
)  e.  ZZ ) )
15 zre 9347 . . . 4  |-  ( N  e.  ZZ  ->  N  e.  RR )
16 zaddcllemneg 9382 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  RR  /\  -u N  e.  NN )  ->  ( M  +  N )  e.  ZZ )
17163expia 1207 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( -u N  e.  NN  ->  ( M  +  N )  e.  ZZ ) )
1815, 17sylan2 286 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -u N  e.  NN  ->  ( M  +  N )  e.  ZZ ) )
1911, 14, 183jaod 1315 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN )  ->  ( M  +  N )  e.  ZZ ) )
203, 19mpd 13 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  +  N
)  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ w3o 979    = wceq 1364    e. wcel 2167  (class class class)co 5925   CCcc 7894   RRcr 7895   0cc0 7896    + caddc 7899   -ucneg 8215   NNcn 9007   ZZcz 9343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344
This theorem is referenced by:  zsubcl  9384  zrevaddcl  9393  zdivadd  9432  zaddcld  9469  eluzaddi  9645  eluzsubi  9646  eluzadd  9647  nn0pzuz  9678  fzen  10135  fzaddel  10151  fzrev3  10179  fzrevral3  10199  elfzmlbp  10224  fzoaddel  10285  zpnn0elfzo  10300  elfzomelpfzo  10324  fzoshftral  10331  climshftlemg  11484  fsumzcl  11584  summodnegmod  12004  dvds2ln  12006  dvds2add  12007  dvdsadd  12018  dvdsadd2b  12022  addmodlteqALT  12041  3dvdsdec  12047  3dvds2dec  12048  opoe  12077  opeo  12079  ndvdsadd  12113  pythagtriplem9  12467  difsqpwdvds  12532  gzaddcl  12571  zsubrg  14213  zringmulg  14230  expghmap  14239  mulgghm2  14240
  Copyright terms: Public domain W3C validator