ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zaddcl Unicode version

Theorem zaddcl 9447
Description: Closure of addition of integers. (Contributed by NM, 9-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
zaddcl  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  +  N
)  e.  ZZ )

Proof of Theorem zaddcl
StepHypRef Expression
1 elz 9409 . . . 4  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) ) )
21simprbi 275 . . 3  |-  ( N  e.  ZZ  ->  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) )
32adantl 277 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) )
4 zcn 9412 . . . . . . 7  |-  ( M  e.  ZZ  ->  M  e.  CC )
54adantr 276 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  CC )
65addridd 8256 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  +  0 )  =  M )
7 simpl 109 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  ZZ )
86, 7eqeltrd 2284 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  +  0 )  e.  ZZ )
9 oveq2 5975 . . . . 5  |-  ( N  =  0  ->  ( M  +  N )  =  ( M  + 
0 ) )
109eleq1d 2276 . . . 4  |-  ( N  =  0  ->  (
( M  +  N
)  e.  ZZ  <->  ( M  +  0 )  e.  ZZ ) )
118, 10syl5ibrcom 157 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  =  0  ->  ( M  +  N )  e.  ZZ ) )
12 zaddcllempos 9444 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  +  N
)  e.  ZZ )
1312ex 115 . . . 4  |-  ( M  e.  ZZ  ->  ( N  e.  NN  ->  ( M  +  N )  e.  ZZ ) )
1413adantr 276 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  NN  ->  ( M  +  N
)  e.  ZZ ) )
15 zre 9411 . . . 4  |-  ( N  e.  ZZ  ->  N  e.  RR )
16 zaddcllemneg 9446 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  RR  /\  -u N  e.  NN )  ->  ( M  +  N )  e.  ZZ )
17163expia 1208 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( -u N  e.  NN  ->  ( M  +  N )  e.  ZZ ) )
1815, 17sylan2 286 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -u N  e.  NN  ->  ( M  +  N )  e.  ZZ ) )
1911, 14, 183jaod 1317 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN )  ->  ( M  +  N )  e.  ZZ ) )
203, 19mpd 13 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  +  N
)  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ w3o 980    = wceq 1373    e. wcel 2178  (class class class)co 5967   CCcc 7958   RRcr 7959   0cc0 7960    + caddc 7963   -ucneg 8279   NNcn 9071   ZZcz 9407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408
This theorem is referenced by:  zsubcl  9448  zrevaddcl  9458  zdivadd  9497  zaddcld  9534  eluzaddi  9710  eluzsubi  9711  eluzadd  9712  nn0pzuz  9743  fzen  10200  fzaddel  10216  fzrev3  10244  fzrevral3  10264  elfzmlbp  10289  fzoun  10340  fzoaddel  10353  zpnn0elfzo  10373  elfzomelpfzo  10397  fzoshftral  10404  ccatsymb  11096  ccatval21sw  11099  swrdccatin2  11220  climshftlemg  11728  fsumzcl  11828  summodnegmod  12248  dvds2ln  12250  dvds2add  12251  dvdsadd  12262  dvdsadd2b  12266  addmodlteqALT  12285  3dvdsdec  12291  3dvds2dec  12292  opoe  12321  opeo  12323  ndvdsadd  12357  pythagtriplem9  12711  difsqpwdvds  12776  gzaddcl  12815  zsubrg  14458  zringmulg  14475  expghmap  14484  mulgghm2  14485
  Copyright terms: Public domain W3C validator