| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zaddcl | Unicode version | ||
| Description: Closure of addition of integers. (Contributed by NM, 9-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
| Ref | Expression |
|---|---|
| zaddcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elz 9328 |
. . . 4
| |
| 2 | 1 | simprbi 275 |
. . 3
|
| 3 | 2 | adantl 277 |
. 2
|
| 4 | zcn 9331 |
. . . . . . 7
| |
| 5 | 4 | adantr 276 |
. . . . . 6
|
| 6 | 5 | addridd 8175 |
. . . . 5
|
| 7 | simpl 109 |
. . . . 5
| |
| 8 | 6, 7 | eqeltrd 2273 |
. . . 4
|
| 9 | oveq2 5930 |
. . . . 5
| |
| 10 | 9 | eleq1d 2265 |
. . . 4
|
| 11 | 8, 10 | syl5ibrcom 157 |
. . 3
|
| 12 | zaddcllempos 9363 |
. . . . 5
| |
| 13 | 12 | ex 115 |
. . . 4
|
| 14 | 13 | adantr 276 |
. . 3
|
| 15 | zre 9330 |
. . . 4
| |
| 16 | zaddcllemneg 9365 |
. . . . 5
| |
| 17 | 16 | 3expia 1207 |
. . . 4
|
| 18 | 15, 17 | sylan2 286 |
. . 3
|
| 19 | 11, 14, 18 | 3jaod 1315 |
. 2
|
| 20 | 3, 19 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 |
| This theorem is referenced by: zsubcl 9367 zrevaddcl 9376 zdivadd 9415 zaddcld 9452 eluzaddi 9628 eluzsubi 9629 eluzadd 9630 nn0pzuz 9661 fzen 10118 fzaddel 10134 fzrev3 10162 fzrevral3 10182 elfzmlbp 10207 fzoaddel 10268 zpnn0elfzo 10283 elfzomelpfzo 10307 fzoshftral 10314 climshftlemg 11467 fsumzcl 11567 summodnegmod 11987 dvds2ln 11989 dvds2add 11990 dvdsadd 12001 dvdsadd2b 12005 addmodlteqALT 12024 3dvdsdec 12030 3dvds2dec 12031 opoe 12060 opeo 12062 ndvdsadd 12096 pythagtriplem9 12442 difsqpwdvds 12507 gzaddcl 12546 zsubrg 14137 zringmulg 14154 expghmap 14163 mulgghm2 14164 |
| Copyright terms: Public domain | W3C validator |