Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > zaddcl | Unicode version |
Description: Closure of addition of integers. (Contributed by NM, 9-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
Ref | Expression |
---|---|
zaddcl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elz 9152 | . . . 4 | |
2 | 1 | simprbi 273 | . . 3 |
3 | 2 | adantl 275 | . 2 |
4 | zcn 9155 | . . . . . . 7 | |
5 | 4 | adantr 274 | . . . . . 6 |
6 | 5 | addid1d 8007 | . . . . 5 |
7 | simpl 108 | . . . . 5 | |
8 | 6, 7 | eqeltrd 2234 | . . . 4 |
9 | oveq2 5826 | . . . . 5 | |
10 | 9 | eleq1d 2226 | . . . 4 |
11 | 8, 10 | syl5ibrcom 156 | . . 3 |
12 | zaddcllempos 9187 | . . . . 5 | |
13 | 12 | ex 114 | . . . 4 |
14 | 13 | adantr 274 | . . 3 |
15 | zre 9154 | . . . 4 | |
16 | zaddcllemneg 9189 | . . . . 5 | |
17 | 16 | 3expia 1187 | . . . 4 |
18 | 15, 17 | sylan2 284 | . . 3 |
19 | 11, 14, 18 | 3jaod 1286 | . 2 |
20 | 3, 19 | mpd 13 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3o 962 wceq 1335 wcel 2128 (class class class)co 5818 cc 7713 cr 7714 cc0 7715 caddc 7718 cneg 8030 cn 8816 cz 9150 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-cnex 7806 ax-resscn 7807 ax-1cn 7808 ax-1re 7809 ax-icn 7810 ax-addcl 7811 ax-addrcl 7812 ax-mulcl 7813 ax-addcom 7815 ax-addass 7817 ax-distr 7819 ax-i2m1 7820 ax-0lt1 7821 ax-0id 7823 ax-rnegex 7824 ax-cnre 7826 ax-pre-ltirr 7827 ax-pre-ltwlin 7828 ax-pre-lttrn 7829 ax-pre-ltadd 7831 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-br 3966 df-opab 4026 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-iota 5132 df-fun 5169 df-fv 5175 df-riota 5774 df-ov 5821 df-oprab 5822 df-mpo 5823 df-pnf 7897 df-mnf 7898 df-xr 7899 df-ltxr 7900 df-le 7901 df-sub 8031 df-neg 8032 df-inn 8817 df-n0 9074 df-z 9151 |
This theorem is referenced by: zsubcl 9191 zrevaddcl 9200 zdivadd 9236 zaddcld 9273 eluzaddi 9448 eluzsubi 9449 eluzadd 9450 nn0pzuz 9481 fzen 9927 fzaddel 9943 fzrev3 9971 fzrevral3 9991 elfzmlbp 10013 fzoaddel 10073 zpnn0elfzo 10088 elfzomelpfzo 10112 fzoshftral 10119 climshftlemg 11181 fsumzcl 11281 summodnegmod 11699 dvds2ln 11701 dvds2add 11702 dvdsadd 11711 dvdsadd2b 11715 addmodlteqALT 11732 3dvdsdec 11737 3dvds2dec 11738 opoe 11767 opeo 11769 ndvdsadd 11803 |
Copyright terms: Public domain | W3C validator |