ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqprloc Unicode version

Theorem nqprloc 7629
Description: A cut produced from a rational is located. Lemma for nqprlu 7631. (Contributed by Jim Kingdon, 8-Dec-2019.)
Assertion
Ref Expression
nqprloc  |-  ( A  e.  Q.  ->  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  { x  |  x 
<Q  A }  \/  r  e.  { x  |  A  <Q  x } ) ) )
Distinct variable group:    x, A, r, q

Proof of Theorem nqprloc
StepHypRef Expression
1 nqtri3or 7480 . . . . . . 7  |-  ( ( q  e.  Q.  /\  A  e.  Q. )  ->  ( q  <Q  A  \/  q  =  A  \/  A  <Q  q ) )
21ancoms 268 . . . . . 6  |-  ( ( A  e.  Q.  /\  q  e.  Q. )  ->  ( q  <Q  A  \/  q  =  A  \/  A  <Q  q ) )
32ad2antrr 488 . . . . 5  |-  ( ( ( ( A  e. 
Q.  /\  q  e.  Q. )  /\  r  e.  Q. )  /\  q  <Q  r )  ->  (
q  <Q  A  \/  q  =  A  \/  A  <Q  q ) )
4 vex 2766 . . . . . . . . . 10  |-  q  e. 
_V
5 breq1 4037 . . . . . . . . . 10  |-  ( x  =  q  ->  (
x  <Q  A  <->  q  <Q  A ) )
64, 5elab 2908 . . . . . . . . 9  |-  ( q  e.  { x  |  x  <Q  A }  <->  q 
<Q  A )
76biimpri 133 . . . . . . . 8  |-  ( q 
<Q  A  ->  q  e. 
{ x  |  x 
<Q  A } )
87orcd 734 . . . . . . 7  |-  ( q 
<Q  A  ->  ( q  e.  { x  |  x  <Q  A }  \/  r  e.  { x  |  A  <Q  x }
) )
98a1i 9 . . . . . 6  |-  ( ( ( ( A  e. 
Q.  /\  q  e.  Q. )  /\  r  e.  Q. )  /\  q  <Q  r )  ->  (
q  <Q  A  ->  (
q  e.  { x  |  x  <Q  A }  \/  r  e.  { x  |  A  <Q  x }
) ) )
10 simpr 110 . . . . . . . 8  |-  ( ( ( ( A  e. 
Q.  /\  q  e.  Q. )  /\  r  e.  Q. )  /\  q  <Q  r )  ->  q  <Q  r )
11 breq1 4037 . . . . . . . 8  |-  ( q  =  A  ->  (
q  <Q  r  <->  A  <Q  r ) )
1210, 11syl5ibcom 155 . . . . . . 7  |-  ( ( ( ( A  e. 
Q.  /\  q  e.  Q. )  /\  r  e.  Q. )  /\  q  <Q  r )  ->  (
q  =  A  ->  A  <Q  r ) )
13 vex 2766 . . . . . . . . 9  |-  r  e. 
_V
14 breq2 4038 . . . . . . . . 9  |-  ( x  =  r  ->  ( A  <Q  x  <->  A  <Q  r ) )
1513, 14elab 2908 . . . . . . . 8  |-  ( r  e.  { x  |  A  <Q  x }  <->  A 
<Q  r )
16 olc 712 . . . . . . . 8  |-  ( r  e.  { x  |  A  <Q  x }  ->  ( q  e.  {
x  |  x  <Q  A }  \/  r  e. 
{ x  |  A  <Q  x } ) )
1715, 16sylbir 135 . . . . . . 7  |-  ( A 
<Q  r  ->  ( q  e.  { x  |  x  <Q  A }  \/  r  e.  { x  |  A  <Q  x }
) )
1812, 17syl6 33 . . . . . 6  |-  ( ( ( ( A  e. 
Q.  /\  q  e.  Q. )  /\  r  e.  Q. )  /\  q  <Q  r )  ->  (
q  =  A  -> 
( q  e.  {
x  |  x  <Q  A }  \/  r  e. 
{ x  |  A  <Q  x } ) ) )
19 ltsonq 7482 . . . . . . . . . 10  |-  <Q  Or  Q.
20 ltrelnq 7449 . . . . . . . . . 10  |-  <Q  C_  ( Q.  X.  Q. )
2119, 20sotri 5066 . . . . . . . . 9  |-  ( ( A  <Q  q  /\  q  <Q  r )  ->  A  <Q  r )
2221, 17syl 14 . . . . . . . 8  |-  ( ( A  <Q  q  /\  q  <Q  r )  -> 
( q  e.  {
x  |  x  <Q  A }  \/  r  e. 
{ x  |  A  <Q  x } ) )
2322expcom 116 . . . . . . 7  |-  ( q 
<Q  r  ->  ( A 
<Q  q  ->  ( q  e.  { x  |  x  <Q  A }  \/  r  e.  { x  |  A  <Q  x }
) ) )
2423adantl 277 . . . . . 6  |-  ( ( ( ( A  e. 
Q.  /\  q  e.  Q. )  /\  r  e.  Q. )  /\  q  <Q  r )  ->  ( A  <Q  q  ->  (
q  e.  { x  |  x  <Q  A }  \/  r  e.  { x  |  A  <Q  x }
) ) )
259, 18, 243jaod 1315 . . . . 5  |-  ( ( ( ( A  e. 
Q.  /\  q  e.  Q. )  /\  r  e.  Q. )  /\  q  <Q  r )  ->  (
( q  <Q  A  \/  q  =  A  \/  A  <Q  q )  -> 
( q  e.  {
x  |  x  <Q  A }  \/  r  e. 
{ x  |  A  <Q  x } ) ) )
263, 25mpd 13 . . . 4  |-  ( ( ( ( A  e. 
Q.  /\  q  e.  Q. )  /\  r  e.  Q. )  /\  q  <Q  r )  ->  (
q  e.  { x  |  x  <Q  A }  \/  r  e.  { x  |  A  <Q  x }
) )
2726ex 115 . . 3  |-  ( ( ( A  e.  Q.  /\  q  e.  Q. )  /\  r  e.  Q. )  ->  ( q  <Q 
r  ->  ( q  e.  { x  |  x 
<Q  A }  \/  r  e.  { x  |  A  <Q  x } ) ) )
2827ralrimiva 2570 . 2  |-  ( ( A  e.  Q.  /\  q  e.  Q. )  ->  A. r  e.  Q.  ( q  <Q  r  ->  ( q  e.  {
x  |  x  <Q  A }  \/  r  e. 
{ x  |  A  <Q  x } ) ) )
2928ralrimiva 2570 1  |-  ( A  e.  Q.  ->  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  { x  |  x 
<Q  A }  \/  r  e.  { x  |  A  <Q  x } ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    \/ w3o 979    = wceq 1364    e. wcel 2167   {cab 2182   A.wral 2475   class class class wbr 4034   Q.cnq 7364    <Q cltq 7369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-mi 7390  df-lti 7391  df-enq 7431  df-nqqs 7432  df-ltnqqs 7437
This theorem is referenced by:  nqprxx  7630
  Copyright terms: Public domain W3C validator