ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqprloc Unicode version

Theorem nqprloc 7102
Description: A cut produced from a rational is located. Lemma for nqprlu 7104. (Contributed by Jim Kingdon, 8-Dec-2019.)
Assertion
Ref Expression
nqprloc  |-  ( A  e.  Q.  ->  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  { x  |  x 
<Q  A }  \/  r  e.  { x  |  A  <Q  x } ) ) )
Distinct variable group:    x, A, r, q

Proof of Theorem nqprloc
StepHypRef Expression
1 nqtri3or 6953 . . . . . . 7  |-  ( ( q  e.  Q.  /\  A  e.  Q. )  ->  ( q  <Q  A  \/  q  =  A  \/  A  <Q  q ) )
21ancoms 264 . . . . . 6  |-  ( ( A  e.  Q.  /\  q  e.  Q. )  ->  ( q  <Q  A  \/  q  =  A  \/  A  <Q  q ) )
32ad2antrr 472 . . . . 5  |-  ( ( ( ( A  e. 
Q.  /\  q  e.  Q. )  /\  r  e.  Q. )  /\  q  <Q  r )  ->  (
q  <Q  A  \/  q  =  A  \/  A  <Q  q ) )
4 vex 2622 . . . . . . . . . 10  |-  q  e. 
_V
5 breq1 3848 . . . . . . . . . 10  |-  ( x  =  q  ->  (
x  <Q  A  <->  q  <Q  A ) )
64, 5elab 2760 . . . . . . . . 9  |-  ( q  e.  { x  |  x  <Q  A }  <->  q 
<Q  A )
76biimpri 131 . . . . . . . 8  |-  ( q 
<Q  A  ->  q  e. 
{ x  |  x 
<Q  A } )
87orcd 687 . . . . . . 7  |-  ( q 
<Q  A  ->  ( q  e.  { x  |  x  <Q  A }  \/  r  e.  { x  |  A  <Q  x }
) )
98a1i 9 . . . . . 6  |-  ( ( ( ( A  e. 
Q.  /\  q  e.  Q. )  /\  r  e.  Q. )  /\  q  <Q  r )  ->  (
q  <Q  A  ->  (
q  e.  { x  |  x  <Q  A }  \/  r  e.  { x  |  A  <Q  x }
) ) )
10 simpr 108 . . . . . . . 8  |-  ( ( ( ( A  e. 
Q.  /\  q  e.  Q. )  /\  r  e.  Q. )  /\  q  <Q  r )  ->  q  <Q  r )
11 breq1 3848 . . . . . . . 8  |-  ( q  =  A  ->  (
q  <Q  r  <->  A  <Q  r ) )
1210, 11syl5ibcom 153 . . . . . . 7  |-  ( ( ( ( A  e. 
Q.  /\  q  e.  Q. )  /\  r  e.  Q. )  /\  q  <Q  r )  ->  (
q  =  A  ->  A  <Q  r ) )
13 vex 2622 . . . . . . . . 9  |-  r  e. 
_V
14 breq2 3849 . . . . . . . . 9  |-  ( x  =  r  ->  ( A  <Q  x  <->  A  <Q  r ) )
1513, 14elab 2760 . . . . . . . 8  |-  ( r  e.  { x  |  A  <Q  x }  <->  A 
<Q  r )
16 olc 667 . . . . . . . 8  |-  ( r  e.  { x  |  A  <Q  x }  ->  ( q  e.  {
x  |  x  <Q  A }  \/  r  e. 
{ x  |  A  <Q  x } ) )
1715, 16sylbir 133 . . . . . . 7  |-  ( A 
<Q  r  ->  ( q  e.  { x  |  x  <Q  A }  \/  r  e.  { x  |  A  <Q  x }
) )
1812, 17syl6 33 . . . . . 6  |-  ( ( ( ( A  e. 
Q.  /\  q  e.  Q. )  /\  r  e.  Q. )  /\  q  <Q  r )  ->  (
q  =  A  -> 
( q  e.  {
x  |  x  <Q  A }  \/  r  e. 
{ x  |  A  <Q  x } ) ) )
19 ltsonq 6955 . . . . . . . . . 10  |-  <Q  Or  Q.
20 ltrelnq 6922 . . . . . . . . . 10  |-  <Q  C_  ( Q.  X.  Q. )
2119, 20sotri 4827 . . . . . . . . 9  |-  ( ( A  <Q  q  /\  q  <Q  r )  ->  A  <Q  r )
2221, 17syl 14 . . . . . . . 8  |-  ( ( A  <Q  q  /\  q  <Q  r )  -> 
( q  e.  {
x  |  x  <Q  A }  \/  r  e. 
{ x  |  A  <Q  x } ) )
2322expcom 114 . . . . . . 7  |-  ( q 
<Q  r  ->  ( A 
<Q  q  ->  ( q  e.  { x  |  x  <Q  A }  \/  r  e.  { x  |  A  <Q  x }
) ) )
2423adantl 271 . . . . . 6  |-  ( ( ( ( A  e. 
Q.  /\  q  e.  Q. )  /\  r  e.  Q. )  /\  q  <Q  r )  ->  ( A  <Q  q  ->  (
q  e.  { x  |  x  <Q  A }  \/  r  e.  { x  |  A  <Q  x }
) ) )
259, 18, 243jaod 1240 . . . . 5  |-  ( ( ( ( A  e. 
Q.  /\  q  e.  Q. )  /\  r  e.  Q. )  /\  q  <Q  r )  ->  (
( q  <Q  A  \/  q  =  A  \/  A  <Q  q )  -> 
( q  e.  {
x  |  x  <Q  A }  \/  r  e. 
{ x  |  A  <Q  x } ) ) )
263, 25mpd 13 . . . 4  |-  ( ( ( ( A  e. 
Q.  /\  q  e.  Q. )  /\  r  e.  Q. )  /\  q  <Q  r )  ->  (
q  e.  { x  |  x  <Q  A }  \/  r  e.  { x  |  A  <Q  x }
) )
2726ex 113 . . 3  |-  ( ( ( A  e.  Q.  /\  q  e.  Q. )  /\  r  e.  Q. )  ->  ( q  <Q 
r  ->  ( q  e.  { x  |  x 
<Q  A }  \/  r  e.  { x  |  A  <Q  x } ) ) )
2827ralrimiva 2446 . 2  |-  ( ( A  e.  Q.  /\  q  e.  Q. )  ->  A. r  e.  Q.  ( q  <Q  r  ->  ( q  e.  {
x  |  x  <Q  A }  \/  r  e. 
{ x  |  A  <Q  x } ) ) )
2928ralrimiva 2446 1  |-  ( A  e.  Q.  ->  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  { x  |  x 
<Q  A }  \/  r  e.  { x  |  A  <Q  x } ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    \/ wo 664    \/ w3o 923    = wceq 1289    e. wcel 1438   {cab 2074   A.wral 2359   class class class wbr 3845   Q.cnq 6837    <Q cltq 6842
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-iinf 4403
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-tr 3937  df-eprel 4116  df-id 4120  df-po 4123  df-iso 4124  df-iord 4193  df-on 4195  df-suc 4198  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-1st 5911  df-2nd 5912  df-recs 6070  df-irdg 6135  df-oadd 6185  df-omul 6186  df-er 6290  df-ec 6292  df-qs 6296  df-ni 6861  df-mi 6863  df-lti 6864  df-enq 6904  df-nqqs 6905  df-ltnqqs 6910
This theorem is referenced by:  nqprxx  7103
  Copyright terms: Public domain W3C validator