ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqprloc Unicode version

Theorem nqprloc 7507
Description: A cut produced from a rational is located. Lemma for nqprlu 7509. (Contributed by Jim Kingdon, 8-Dec-2019.)
Assertion
Ref Expression
nqprloc  |-  ( A  e.  Q.  ->  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  { x  |  x 
<Q  A }  \/  r  e.  { x  |  A  <Q  x } ) ) )
Distinct variable group:    x, A, r, q

Proof of Theorem nqprloc
StepHypRef Expression
1 nqtri3or 7358 . . . . . . 7  |-  ( ( q  e.  Q.  /\  A  e.  Q. )  ->  ( q  <Q  A  \/  q  =  A  \/  A  <Q  q ) )
21ancoms 266 . . . . . 6  |-  ( ( A  e.  Q.  /\  q  e.  Q. )  ->  ( q  <Q  A  \/  q  =  A  \/  A  <Q  q ) )
32ad2antrr 485 . . . . 5  |-  ( ( ( ( A  e. 
Q.  /\  q  e.  Q. )  /\  r  e.  Q. )  /\  q  <Q  r )  ->  (
q  <Q  A  \/  q  =  A  \/  A  <Q  q ) )
4 vex 2733 . . . . . . . . . 10  |-  q  e. 
_V
5 breq1 3992 . . . . . . . . . 10  |-  ( x  =  q  ->  (
x  <Q  A  <->  q  <Q  A ) )
64, 5elab 2874 . . . . . . . . 9  |-  ( q  e.  { x  |  x  <Q  A }  <->  q 
<Q  A )
76biimpri 132 . . . . . . . 8  |-  ( q 
<Q  A  ->  q  e. 
{ x  |  x 
<Q  A } )
87orcd 728 . . . . . . 7  |-  ( q 
<Q  A  ->  ( q  e.  { x  |  x  <Q  A }  \/  r  e.  { x  |  A  <Q  x }
) )
98a1i 9 . . . . . 6  |-  ( ( ( ( A  e. 
Q.  /\  q  e.  Q. )  /\  r  e.  Q. )  /\  q  <Q  r )  ->  (
q  <Q  A  ->  (
q  e.  { x  |  x  <Q  A }  \/  r  e.  { x  |  A  <Q  x }
) ) )
10 simpr 109 . . . . . . . 8  |-  ( ( ( ( A  e. 
Q.  /\  q  e.  Q. )  /\  r  e.  Q. )  /\  q  <Q  r )  ->  q  <Q  r )
11 breq1 3992 . . . . . . . 8  |-  ( q  =  A  ->  (
q  <Q  r  <->  A  <Q  r ) )
1210, 11syl5ibcom 154 . . . . . . 7  |-  ( ( ( ( A  e. 
Q.  /\  q  e.  Q. )  /\  r  e.  Q. )  /\  q  <Q  r )  ->  (
q  =  A  ->  A  <Q  r ) )
13 vex 2733 . . . . . . . . 9  |-  r  e. 
_V
14 breq2 3993 . . . . . . . . 9  |-  ( x  =  r  ->  ( A  <Q  x  <->  A  <Q  r ) )
1513, 14elab 2874 . . . . . . . 8  |-  ( r  e.  { x  |  A  <Q  x }  <->  A 
<Q  r )
16 olc 706 . . . . . . . 8  |-  ( r  e.  { x  |  A  <Q  x }  ->  ( q  e.  {
x  |  x  <Q  A }  \/  r  e. 
{ x  |  A  <Q  x } ) )
1715, 16sylbir 134 . . . . . . 7  |-  ( A 
<Q  r  ->  ( q  e.  { x  |  x  <Q  A }  \/  r  e.  { x  |  A  <Q  x }
) )
1812, 17syl6 33 . . . . . 6  |-  ( ( ( ( A  e. 
Q.  /\  q  e.  Q. )  /\  r  e.  Q. )  /\  q  <Q  r )  ->  (
q  =  A  -> 
( q  e.  {
x  |  x  <Q  A }  \/  r  e. 
{ x  |  A  <Q  x } ) ) )
19 ltsonq 7360 . . . . . . . . . 10  |-  <Q  Or  Q.
20 ltrelnq 7327 . . . . . . . . . 10  |-  <Q  C_  ( Q.  X.  Q. )
2119, 20sotri 5006 . . . . . . . . 9  |-  ( ( A  <Q  q  /\  q  <Q  r )  ->  A  <Q  r )
2221, 17syl 14 . . . . . . . 8  |-  ( ( A  <Q  q  /\  q  <Q  r )  -> 
( q  e.  {
x  |  x  <Q  A }  \/  r  e. 
{ x  |  A  <Q  x } ) )
2322expcom 115 . . . . . . 7  |-  ( q 
<Q  r  ->  ( A 
<Q  q  ->  ( q  e.  { x  |  x  <Q  A }  \/  r  e.  { x  |  A  <Q  x }
) ) )
2423adantl 275 . . . . . 6  |-  ( ( ( ( A  e. 
Q.  /\  q  e.  Q. )  /\  r  e.  Q. )  /\  q  <Q  r )  ->  ( A  <Q  q  ->  (
q  e.  { x  |  x  <Q  A }  \/  r  e.  { x  |  A  <Q  x }
) ) )
259, 18, 243jaod 1299 . . . . 5  |-  ( ( ( ( A  e. 
Q.  /\  q  e.  Q. )  /\  r  e.  Q. )  /\  q  <Q  r )  ->  (
( q  <Q  A  \/  q  =  A  \/  A  <Q  q )  -> 
( q  e.  {
x  |  x  <Q  A }  \/  r  e. 
{ x  |  A  <Q  x } ) ) )
263, 25mpd 13 . . . 4  |-  ( ( ( ( A  e. 
Q.  /\  q  e.  Q. )  /\  r  e.  Q. )  /\  q  <Q  r )  ->  (
q  e.  { x  |  x  <Q  A }  \/  r  e.  { x  |  A  <Q  x }
) )
2726ex 114 . . 3  |-  ( ( ( A  e.  Q.  /\  q  e.  Q. )  /\  r  e.  Q. )  ->  ( q  <Q 
r  ->  ( q  e.  { x  |  x 
<Q  A }  \/  r  e.  { x  |  A  <Q  x } ) ) )
2827ralrimiva 2543 . 2  |-  ( ( A  e.  Q.  /\  q  e.  Q. )  ->  A. r  e.  Q.  ( q  <Q  r  ->  ( q  e.  {
x  |  x  <Q  A }  \/  r  e. 
{ x  |  A  <Q  x } ) ) )
2928ralrimiva 2543 1  |-  ( A  e.  Q.  ->  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  { x  |  x 
<Q  A }  \/  r  e.  { x  |  A  <Q  x } ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 703    \/ w3o 972    = wceq 1348    e. wcel 2141   {cab 2156   A.wral 2448   class class class wbr 3989   Q.cnq 7242    <Q cltq 7247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-mi 7268  df-lti 7269  df-enq 7309  df-nqqs 7310  df-ltnqqs 7315
This theorem is referenced by:  nqprxx  7508
  Copyright terms: Public domain W3C validator