ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqprloc Unicode version

Theorem nqprloc 7728
Description: A cut produced from a rational is located. Lemma for nqprlu 7730. (Contributed by Jim Kingdon, 8-Dec-2019.)
Assertion
Ref Expression
nqprloc  |-  ( A  e.  Q.  ->  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  { x  |  x 
<Q  A }  \/  r  e.  { x  |  A  <Q  x } ) ) )
Distinct variable group:    x, A, r, q

Proof of Theorem nqprloc
StepHypRef Expression
1 nqtri3or 7579 . . . . . . 7  |-  ( ( q  e.  Q.  /\  A  e.  Q. )  ->  ( q  <Q  A  \/  q  =  A  \/  A  <Q  q ) )
21ancoms 268 . . . . . 6  |-  ( ( A  e.  Q.  /\  q  e.  Q. )  ->  ( q  <Q  A  \/  q  =  A  \/  A  <Q  q ) )
32ad2antrr 488 . . . . 5  |-  ( ( ( ( A  e. 
Q.  /\  q  e.  Q. )  /\  r  e.  Q. )  /\  q  <Q  r )  ->  (
q  <Q  A  \/  q  =  A  \/  A  <Q  q ) )
4 vex 2802 . . . . . . . . . 10  |-  q  e. 
_V
5 breq1 4085 . . . . . . . . . 10  |-  ( x  =  q  ->  (
x  <Q  A  <->  q  <Q  A ) )
64, 5elab 2947 . . . . . . . . 9  |-  ( q  e.  { x  |  x  <Q  A }  <->  q 
<Q  A )
76biimpri 133 . . . . . . . 8  |-  ( q 
<Q  A  ->  q  e. 
{ x  |  x 
<Q  A } )
87orcd 738 . . . . . . 7  |-  ( q 
<Q  A  ->  ( q  e.  { x  |  x  <Q  A }  \/  r  e.  { x  |  A  <Q  x }
) )
98a1i 9 . . . . . 6  |-  ( ( ( ( A  e. 
Q.  /\  q  e.  Q. )  /\  r  e.  Q. )  /\  q  <Q  r )  ->  (
q  <Q  A  ->  (
q  e.  { x  |  x  <Q  A }  \/  r  e.  { x  |  A  <Q  x }
) ) )
10 simpr 110 . . . . . . . 8  |-  ( ( ( ( A  e. 
Q.  /\  q  e.  Q. )  /\  r  e.  Q. )  /\  q  <Q  r )  ->  q  <Q  r )
11 breq1 4085 . . . . . . . 8  |-  ( q  =  A  ->  (
q  <Q  r  <->  A  <Q  r ) )
1210, 11syl5ibcom 155 . . . . . . 7  |-  ( ( ( ( A  e. 
Q.  /\  q  e.  Q. )  /\  r  e.  Q. )  /\  q  <Q  r )  ->  (
q  =  A  ->  A  <Q  r ) )
13 vex 2802 . . . . . . . . 9  |-  r  e. 
_V
14 breq2 4086 . . . . . . . . 9  |-  ( x  =  r  ->  ( A  <Q  x  <->  A  <Q  r ) )
1513, 14elab 2947 . . . . . . . 8  |-  ( r  e.  { x  |  A  <Q  x }  <->  A 
<Q  r )
16 olc 716 . . . . . . . 8  |-  ( r  e.  { x  |  A  <Q  x }  ->  ( q  e.  {
x  |  x  <Q  A }  \/  r  e. 
{ x  |  A  <Q  x } ) )
1715, 16sylbir 135 . . . . . . 7  |-  ( A 
<Q  r  ->  ( q  e.  { x  |  x  <Q  A }  \/  r  e.  { x  |  A  <Q  x }
) )
1812, 17syl6 33 . . . . . 6  |-  ( ( ( ( A  e. 
Q.  /\  q  e.  Q. )  /\  r  e.  Q. )  /\  q  <Q  r )  ->  (
q  =  A  -> 
( q  e.  {
x  |  x  <Q  A }  \/  r  e. 
{ x  |  A  <Q  x } ) ) )
19 ltsonq 7581 . . . . . . . . . 10  |-  <Q  Or  Q.
20 ltrelnq 7548 . . . . . . . . . 10  |-  <Q  C_  ( Q.  X.  Q. )
2119, 20sotri 5123 . . . . . . . . 9  |-  ( ( A  <Q  q  /\  q  <Q  r )  ->  A  <Q  r )
2221, 17syl 14 . . . . . . . 8  |-  ( ( A  <Q  q  /\  q  <Q  r )  -> 
( q  e.  {
x  |  x  <Q  A }  \/  r  e. 
{ x  |  A  <Q  x } ) )
2322expcom 116 . . . . . . 7  |-  ( q 
<Q  r  ->  ( A 
<Q  q  ->  ( q  e.  { x  |  x  <Q  A }  \/  r  e.  { x  |  A  <Q  x }
) ) )
2423adantl 277 . . . . . 6  |-  ( ( ( ( A  e. 
Q.  /\  q  e.  Q. )  /\  r  e.  Q. )  /\  q  <Q  r )  ->  ( A  <Q  q  ->  (
q  e.  { x  |  x  <Q  A }  \/  r  e.  { x  |  A  <Q  x }
) ) )
259, 18, 243jaod 1338 . . . . 5  |-  ( ( ( ( A  e. 
Q.  /\  q  e.  Q. )  /\  r  e.  Q. )  /\  q  <Q  r )  ->  (
( q  <Q  A  \/  q  =  A  \/  A  <Q  q )  -> 
( q  e.  {
x  |  x  <Q  A }  \/  r  e. 
{ x  |  A  <Q  x } ) ) )
263, 25mpd 13 . . . 4  |-  ( ( ( ( A  e. 
Q.  /\  q  e.  Q. )  /\  r  e.  Q. )  /\  q  <Q  r )  ->  (
q  e.  { x  |  x  <Q  A }  \/  r  e.  { x  |  A  <Q  x }
) )
2726ex 115 . . 3  |-  ( ( ( A  e.  Q.  /\  q  e.  Q. )  /\  r  e.  Q. )  ->  ( q  <Q 
r  ->  ( q  e.  { x  |  x 
<Q  A }  \/  r  e.  { x  |  A  <Q  x } ) ) )
2827ralrimiva 2603 . 2  |-  ( ( A  e.  Q.  /\  q  e.  Q. )  ->  A. r  e.  Q.  ( q  <Q  r  ->  ( q  e.  {
x  |  x  <Q  A }  \/  r  e. 
{ x  |  A  <Q  x } ) ) )
2928ralrimiva 2603 1  |-  ( A  e.  Q.  ->  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  { x  |  x 
<Q  A }  \/  r  e.  { x  |  A  <Q  x } ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 713    \/ w3o 1001    = wceq 1395    e. wcel 2200   {cab 2215   A.wral 2508   class class class wbr 4082   Q.cnq 7463    <Q cltq 7468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-eprel 4379  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-oadd 6564  df-omul 6565  df-er 6678  df-ec 6680  df-qs 6684  df-ni 7487  df-mi 7489  df-lti 7490  df-enq 7530  df-nqqs 7531  df-ltnqqs 7536
This theorem is referenced by:  nqprxx  7729
  Copyright terms: Public domain W3C validator