ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqprloc Unicode version

Theorem nqprloc 7658
Description: A cut produced from a rational is located. Lemma for nqprlu 7660. (Contributed by Jim Kingdon, 8-Dec-2019.)
Assertion
Ref Expression
nqprloc  |-  ( A  e.  Q.  ->  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  { x  |  x 
<Q  A }  \/  r  e.  { x  |  A  <Q  x } ) ) )
Distinct variable group:    x, A, r, q

Proof of Theorem nqprloc
StepHypRef Expression
1 nqtri3or 7509 . . . . . . 7  |-  ( ( q  e.  Q.  /\  A  e.  Q. )  ->  ( q  <Q  A  \/  q  =  A  \/  A  <Q  q ) )
21ancoms 268 . . . . . 6  |-  ( ( A  e.  Q.  /\  q  e.  Q. )  ->  ( q  <Q  A  \/  q  =  A  \/  A  <Q  q ) )
32ad2antrr 488 . . . . 5  |-  ( ( ( ( A  e. 
Q.  /\  q  e.  Q. )  /\  r  e.  Q. )  /\  q  <Q  r )  ->  (
q  <Q  A  \/  q  =  A  \/  A  <Q  q ) )
4 vex 2775 . . . . . . . . . 10  |-  q  e. 
_V
5 breq1 4047 . . . . . . . . . 10  |-  ( x  =  q  ->  (
x  <Q  A  <->  q  <Q  A ) )
64, 5elab 2917 . . . . . . . . 9  |-  ( q  e.  { x  |  x  <Q  A }  <->  q 
<Q  A )
76biimpri 133 . . . . . . . 8  |-  ( q 
<Q  A  ->  q  e. 
{ x  |  x 
<Q  A } )
87orcd 735 . . . . . . 7  |-  ( q 
<Q  A  ->  ( q  e.  { x  |  x  <Q  A }  \/  r  e.  { x  |  A  <Q  x }
) )
98a1i 9 . . . . . 6  |-  ( ( ( ( A  e. 
Q.  /\  q  e.  Q. )  /\  r  e.  Q. )  /\  q  <Q  r )  ->  (
q  <Q  A  ->  (
q  e.  { x  |  x  <Q  A }  \/  r  e.  { x  |  A  <Q  x }
) ) )
10 simpr 110 . . . . . . . 8  |-  ( ( ( ( A  e. 
Q.  /\  q  e.  Q. )  /\  r  e.  Q. )  /\  q  <Q  r )  ->  q  <Q  r )
11 breq1 4047 . . . . . . . 8  |-  ( q  =  A  ->  (
q  <Q  r  <->  A  <Q  r ) )
1210, 11syl5ibcom 155 . . . . . . 7  |-  ( ( ( ( A  e. 
Q.  /\  q  e.  Q. )  /\  r  e.  Q. )  /\  q  <Q  r )  ->  (
q  =  A  ->  A  <Q  r ) )
13 vex 2775 . . . . . . . . 9  |-  r  e. 
_V
14 breq2 4048 . . . . . . . . 9  |-  ( x  =  r  ->  ( A  <Q  x  <->  A  <Q  r ) )
1513, 14elab 2917 . . . . . . . 8  |-  ( r  e.  { x  |  A  <Q  x }  <->  A 
<Q  r )
16 olc 713 . . . . . . . 8  |-  ( r  e.  { x  |  A  <Q  x }  ->  ( q  e.  {
x  |  x  <Q  A }  \/  r  e. 
{ x  |  A  <Q  x } ) )
1715, 16sylbir 135 . . . . . . 7  |-  ( A 
<Q  r  ->  ( q  e.  { x  |  x  <Q  A }  \/  r  e.  { x  |  A  <Q  x }
) )
1812, 17syl6 33 . . . . . 6  |-  ( ( ( ( A  e. 
Q.  /\  q  e.  Q. )  /\  r  e.  Q. )  /\  q  <Q  r )  ->  (
q  =  A  -> 
( q  e.  {
x  |  x  <Q  A }  \/  r  e. 
{ x  |  A  <Q  x } ) ) )
19 ltsonq 7511 . . . . . . . . . 10  |-  <Q  Or  Q.
20 ltrelnq 7478 . . . . . . . . . 10  |-  <Q  C_  ( Q.  X.  Q. )
2119, 20sotri 5078 . . . . . . . . 9  |-  ( ( A  <Q  q  /\  q  <Q  r )  ->  A  <Q  r )
2221, 17syl 14 . . . . . . . 8  |-  ( ( A  <Q  q  /\  q  <Q  r )  -> 
( q  e.  {
x  |  x  <Q  A }  \/  r  e. 
{ x  |  A  <Q  x } ) )
2322expcom 116 . . . . . . 7  |-  ( q 
<Q  r  ->  ( A 
<Q  q  ->  ( q  e.  { x  |  x  <Q  A }  \/  r  e.  { x  |  A  <Q  x }
) ) )
2423adantl 277 . . . . . 6  |-  ( ( ( ( A  e. 
Q.  /\  q  e.  Q. )  /\  r  e.  Q. )  /\  q  <Q  r )  ->  ( A  <Q  q  ->  (
q  e.  { x  |  x  <Q  A }  \/  r  e.  { x  |  A  <Q  x }
) ) )
259, 18, 243jaod 1317 . . . . 5  |-  ( ( ( ( A  e. 
Q.  /\  q  e.  Q. )  /\  r  e.  Q. )  /\  q  <Q  r )  ->  (
( q  <Q  A  \/  q  =  A  \/  A  <Q  q )  -> 
( q  e.  {
x  |  x  <Q  A }  \/  r  e. 
{ x  |  A  <Q  x } ) ) )
263, 25mpd 13 . . . 4  |-  ( ( ( ( A  e. 
Q.  /\  q  e.  Q. )  /\  r  e.  Q. )  /\  q  <Q  r )  ->  (
q  e.  { x  |  x  <Q  A }  \/  r  e.  { x  |  A  <Q  x }
) )
2726ex 115 . . 3  |-  ( ( ( A  e.  Q.  /\  q  e.  Q. )  /\  r  e.  Q. )  ->  ( q  <Q 
r  ->  ( q  e.  { x  |  x 
<Q  A }  \/  r  e.  { x  |  A  <Q  x } ) ) )
2827ralrimiva 2579 . 2  |-  ( ( A  e.  Q.  /\  q  e.  Q. )  ->  A. r  e.  Q.  ( q  <Q  r  ->  ( q  e.  {
x  |  x  <Q  A }  \/  r  e. 
{ x  |  A  <Q  x } ) ) )
2928ralrimiva 2579 1  |-  ( A  e.  Q.  ->  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  { x  |  x 
<Q  A }  \/  r  e.  { x  |  A  <Q  x } ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 710    \/ w3o 980    = wceq 1373    e. wcel 2176   {cab 2191   A.wral 2484   class class class wbr 4044   Q.cnq 7393    <Q cltq 7398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-eprel 4336  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-oadd 6506  df-omul 6507  df-er 6620  df-ec 6622  df-qs 6626  df-ni 7417  df-mi 7419  df-lti 7420  df-enq 7460  df-nqqs 7461  df-ltnqqs 7466
This theorem is referenced by:  nqprxx  7659
  Copyright terms: Public domain W3C validator