Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > zdceq | Unicode version |
Description: Equality of integers is decidable. (Contributed by Jim Kingdon, 14-Mar-2020.) |
Ref | Expression |
---|---|
zdceq | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ztri3or 9230 | . 2 | |
2 | zre 9191 | . . . 4 | |
3 | ltne 7979 | . . . . . . . 8 | |
4 | 3 | necomd 2421 | . . . . . . 7 |
5 | olc 701 | . . . . . . . 8 | |
6 | dcne 2346 | . . . . . . . 8 DECID | |
7 | 5, 6 | sylibr 133 | . . . . . . 7 DECID |
8 | 4, 7 | syl 14 | . . . . . 6 DECID |
9 | 8 | ex 114 | . . . . 5 DECID |
10 | 9 | adantr 274 | . . . 4 DECID |
11 | 2, 10 | sylan 281 | . . 3 DECID |
12 | orc 702 | . . . . 5 | |
13 | 12, 6 | sylibr 133 | . . . 4 DECID |
14 | 13 | a1i 9 | . . 3 DECID |
15 | zre 9191 | . . . . 5 | |
16 | ltne 7979 | . . . . . . 7 | |
17 | 16, 7 | syl 14 | . . . . . 6 DECID |
18 | 17 | ex 114 | . . . . 5 DECID |
19 | 15, 18 | syl 14 | . . . 4 DECID |
20 | 19 | adantl 275 | . . 3 DECID |
21 | 11, 14, 20 | 3jaod 1294 | . 2 DECID |
22 | 1, 21 | mpd 13 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 698 DECID wdc 824 w3o 967 wceq 1343 wcel 2136 wne 2335 class class class wbr 3981 cr 7748 clt 7929 cz 9187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-addcom 7849 ax-addass 7851 ax-distr 7853 ax-i2m1 7854 ax-0lt1 7855 ax-0id 7857 ax-rnegex 7858 ax-cnre 7860 ax-pre-ltirr 7861 ax-pre-ltwlin 7862 ax-pre-lttrn 7863 ax-pre-ltadd 7865 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-reu 2450 df-rab 2452 df-v 2727 df-sbc 2951 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-br 3982 df-opab 4043 df-id 4270 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-iota 5152 df-fun 5189 df-fv 5195 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-sub 8067 df-neg 8068 df-inn 8854 df-n0 9111 df-z 9188 |
This theorem is referenced by: nn0n0n1ge2b 9266 nn0lt2 9268 prime 9286 elnn1uz2 9541 iseqf1olemqcl 10417 iseqf1olemnab 10419 iseqf1olemab 10420 seq3f1olemstep 10432 exp3val 10453 hashfzp1 10733 fprod1p 11536 dvdsdc 11734 zdvdsdc 11748 dvdsabseq 11781 alzdvds 11788 fzo0dvdseq 11791 gcdmndc 11873 gcdsupex 11886 gcdsupcl 11887 gcd0id 11908 gcdaddm 11913 dfgcd2 11943 gcdmultiplez 11950 dvdssq 11960 nn0seqcvgd 11969 algcvgblem 11977 eucalgval2 11981 lcmmndc 11990 lcmdvds 12007 lcmid 12008 mulgcddvds 12022 cncongr2 12032 isprm3 12046 isprm4 12047 prm2orodd 12054 rpexp 12081 phivalfi 12140 phiprmpw 12150 phimullem 12153 eulerthlemfi 12156 hashgcdeq 12167 phisum 12168 pcxnn0cl 12238 pcge0 12240 pcdvdsb 12247 pcneg 12252 pcdvdstr 12254 pcgcd1 12255 pc2dvds 12257 pcz 12259 pcprmpw2 12260 pcmpt 12269 ennnfonelemim 12353 unbendc 12383 strsetsid 12423 lgsval 13505 lgsfvalg 13506 lgsfcl2 13507 lgscllem 13508 lgsval2lem 13511 lgsneg1 13526 lgsdir2 13534 lgsdirprm 13535 lgsdir 13536 lgsne0 13539 lgsprme0 13543 lgsdirnn0 13548 lgsdinn0 13549 2sqlem9 13560 nninffeq 13860 nconstwlpolem 13903 |
Copyright terms: Public domain | W3C validator |