| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zdceq | Unicode version | ||
| Description: Equality of integers is decidable. (Contributed by Jim Kingdon, 14-Mar-2020.) |
| Ref | Expression |
|---|---|
| zdceq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ztri3or 9417 |
. 2
| |
| 2 | zre 9378 |
. . . 4
| |
| 3 | ltne 8159 |
. . . . . . . 8
| |
| 4 | 3 | necomd 2462 |
. . . . . . 7
|
| 5 | olc 713 |
. . . . . . . 8
| |
| 6 | dcne 2387 |
. . . . . . . 8
| |
| 7 | 5, 6 | sylibr 134 |
. . . . . . 7
|
| 8 | 4, 7 | syl 14 |
. . . . . 6
|
| 9 | 8 | ex 115 |
. . . . 5
|
| 10 | 9 | adantr 276 |
. . . 4
|
| 11 | 2, 10 | sylan 283 |
. . 3
|
| 12 | orc 714 |
. . . . 5
| |
| 13 | 12, 6 | sylibr 134 |
. . . 4
|
| 14 | 13 | a1i 9 |
. . 3
|
| 15 | zre 9378 |
. . . . 5
| |
| 16 | ltne 8159 |
. . . . . . 7
| |
| 17 | 16, 7 | syl 14 |
. . . . . 6
|
| 18 | 17 | ex 115 |
. . . . 5
|
| 19 | 15, 18 | syl 14 |
. . . 4
|
| 20 | 19 | adantl 277 |
. . 3
|
| 21 | 11, 14, 20 | 3jaod 1317 |
. 2
|
| 22 | 1, 21 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-addcom 8027 ax-addass 8029 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-0id 8035 ax-rnegex 8036 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-ltadd 8043 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-opab 4107 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-iota 5233 df-fun 5274 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-inn 9039 df-n0 9298 df-z 9375 |
| This theorem is referenced by: nn0n0n1ge2b 9454 nn0lt2 9456 prime 9474 elnn1uz2 9730 iseqf1olemqcl 10646 iseqf1olemnab 10648 iseqf1olemab 10649 seq3f1olemstep 10661 exp3val 10688 hashfzp1 10971 ccat1st1st 11096 fprod1p 11943 dvdsdc 12142 zdvdsdc 12156 fsumdvds 12186 dvdsabseq 12191 alzdvds 12198 fzo0dvdseq 12201 gcdmndc 12309 gcdsupex 12311 gcdsupcl 12312 gcd0id 12333 gcdaddm 12338 dfgcd2 12368 gcdmultiplez 12375 dvdssq 12385 nn0seqcvgd 12396 algcvgblem 12404 eucalgval2 12408 lcmmndc 12417 lcmdvds 12434 lcmid 12435 mulgcddvds 12449 cncongr2 12459 isprm3 12473 isprm4 12474 prm2orodd 12481 rpexp 12508 phivalfi 12567 phiprmpw 12577 phimullem 12580 eulerthlemfi 12583 hashgcdeq 12595 phisum 12596 pcxnn0cl 12666 pcge0 12669 pcdvdsb 12676 pcneg 12681 pcdvdstr 12683 pcgcd1 12684 pc2dvds 12686 pcz 12688 pcprmpw2 12689 pcmpt 12699 4sqlemafi 12751 4sqleminfi 12753 4sqexercise1 12754 4sqexercise2 12755 4sqlemsdc 12756 4sqlem11 12757 4sqlem19 12765 ennnfonelemim 12828 unbendc 12858 strsetsid 12898 mulgval 13491 mulgfng 13493 subgmulg 13557 znf1o 14446 psr1clfi 14483 ply1term 15248 dvply1 15270 perfectlem2 15505 lgsval 15514 lgsfvalg 15515 lgsfcl2 15516 lgscllem 15517 lgsval2lem 15520 lgsneg1 15535 lgsdir2 15543 lgsdirprm 15544 lgsdir 15545 lgsne0 15548 lgsprme0 15552 lgsdirnn0 15557 lgsdinn0 15558 lgsquadlem1 15587 lgsquadlem2 15588 lgsquad3 15594 2lgs 15614 2lgsoddprm 15623 2sqlem9 15634 nninffeq 15994 nconstwlpolem 16041 |
| Copyright terms: Public domain | W3C validator |