| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zdceq | Unicode version | ||
| Description: Equality of integers is decidable. (Contributed by Jim Kingdon, 14-Mar-2020.) |
| Ref | Expression |
|---|---|
| zdceq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ztri3or 9489 |
. 2
| |
| 2 | zre 9450 |
. . . 4
| |
| 3 | ltne 8231 |
. . . . . . . 8
| |
| 4 | 3 | necomd 2486 |
. . . . . . 7
|
| 5 | olc 716 |
. . . . . . . 8
| |
| 6 | dcne 2411 |
. . . . . . . 8
| |
| 7 | 5, 6 | sylibr 134 |
. . . . . . 7
|
| 8 | 4, 7 | syl 14 |
. . . . . 6
|
| 9 | 8 | ex 115 |
. . . . 5
|
| 10 | 9 | adantr 276 |
. . . 4
|
| 11 | 2, 10 | sylan 283 |
. . 3
|
| 12 | orc 717 |
. . . . 5
| |
| 13 | 12, 6 | sylibr 134 |
. . . 4
|
| 14 | 13 | a1i 9 |
. . 3
|
| 15 | zre 9450 |
. . . . 5
| |
| 16 | ltne 8231 |
. . . . . . 7
| |
| 17 | 16, 7 | syl 14 |
. . . . . 6
|
| 18 | 17 | ex 115 |
. . . . 5
|
| 19 | 15, 18 | syl 14 |
. . . 4
|
| 20 | 19 | adantl 277 |
. . 3
|
| 21 | 11, 14, 20 | 3jaod 1338 |
. 2
|
| 22 | 1, 21 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-n0 9370 df-z 9447 |
| This theorem is referenced by: nn0n0n1ge2b 9526 nn0lt2 9528 prime 9546 elnn1uz2 9802 iseqf1olemqcl 10721 iseqf1olemnab 10723 iseqf1olemab 10724 seq3f1olemstep 10736 exp3val 10763 hashfzp1 11046 ccat1st1st 11172 swrdccatin1 11257 fprod1p 12110 dvdsdc 12309 zdvdsdc 12323 fsumdvds 12353 dvdsabseq 12358 alzdvds 12365 fzo0dvdseq 12368 gcdmndc 12476 gcdsupex 12478 gcdsupcl 12479 gcd0id 12500 gcdaddm 12505 dfgcd2 12535 gcdmultiplez 12542 dvdssq 12552 nn0seqcvgd 12563 algcvgblem 12571 eucalgval2 12575 lcmmndc 12584 lcmdvds 12601 lcmid 12602 mulgcddvds 12616 cncongr2 12626 isprm3 12640 isprm4 12641 prm2orodd 12648 rpexp 12675 phivalfi 12734 phiprmpw 12744 phimullem 12747 eulerthlemfi 12750 hashgcdeq 12762 phisum 12763 pcxnn0cl 12833 pcge0 12836 pcdvdsb 12843 pcneg 12848 pcdvdstr 12850 pcgcd1 12851 pc2dvds 12853 pcz 12855 pcprmpw2 12856 pcmpt 12866 4sqlemafi 12918 4sqleminfi 12920 4sqexercise1 12921 4sqexercise2 12922 4sqlemsdc 12923 4sqlem11 12924 4sqlem19 12932 ennnfonelemim 12995 unbendc 13025 strsetsid 13065 bassetsnn 13089 mulgval 13659 mulgfng 13661 subgmulg 13725 znf1o 14615 psr1clfi 14652 ply1term 15417 dvply1 15439 perfectlem2 15674 lgsval 15683 lgsfvalg 15684 lgsfcl2 15685 lgscllem 15686 lgsval2lem 15689 lgsneg1 15704 lgsdir2 15712 lgsdirprm 15713 lgsdir 15714 lgsne0 15717 lgsprme0 15721 lgsdirnn0 15726 lgsdinn0 15727 lgsquadlem1 15756 lgsquadlem2 15757 lgsquad3 15763 2lgs 15783 2lgsoddprm 15792 2sqlem9 15803 nninffeq 16386 nconstwlpolem 16433 |
| Copyright terms: Public domain | W3C validator |