| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zdceq | Unicode version | ||
| Description: Equality of integers is decidable. (Contributed by Jim Kingdon, 14-Mar-2020.) |
| Ref | Expression |
|---|---|
| zdceq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ztri3or 9450 |
. 2
| |
| 2 | zre 9411 |
. . . 4
| |
| 3 | ltne 8192 |
. . . . . . . 8
| |
| 4 | 3 | necomd 2464 |
. . . . . . 7
|
| 5 | olc 713 |
. . . . . . . 8
| |
| 6 | dcne 2389 |
. . . . . . . 8
| |
| 7 | 5, 6 | sylibr 134 |
. . . . . . 7
|
| 8 | 4, 7 | syl 14 |
. . . . . 6
|
| 9 | 8 | ex 115 |
. . . . 5
|
| 10 | 9 | adantr 276 |
. . . 4
|
| 11 | 2, 10 | sylan 283 |
. . 3
|
| 12 | orc 714 |
. . . . 5
| |
| 13 | 12, 6 | sylibr 134 |
. . . 4
|
| 14 | 13 | a1i 9 |
. . 3
|
| 15 | zre 9411 |
. . . . 5
| |
| 16 | ltne 8192 |
. . . . . . 7
| |
| 17 | 16, 7 | syl 14 |
. . . . . 6
|
| 18 | 17 | ex 115 |
. . . . 5
|
| 19 | 15, 18 | syl 14 |
. . . 4
|
| 20 | 19 | adantl 277 |
. . 3
|
| 21 | 11, 14, 20 | 3jaod 1317 |
. 2
|
| 22 | 1, 21 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 |
| This theorem is referenced by: nn0n0n1ge2b 9487 nn0lt2 9489 prime 9507 elnn1uz2 9763 iseqf1olemqcl 10681 iseqf1olemnab 10683 iseqf1olemab 10684 seq3f1olemstep 10696 exp3val 10723 hashfzp1 11006 ccat1st1st 11131 swrdccatin1 11216 fprod1p 12025 dvdsdc 12224 zdvdsdc 12238 fsumdvds 12268 dvdsabseq 12273 alzdvds 12280 fzo0dvdseq 12283 gcdmndc 12391 gcdsupex 12393 gcdsupcl 12394 gcd0id 12415 gcdaddm 12420 dfgcd2 12450 gcdmultiplez 12457 dvdssq 12467 nn0seqcvgd 12478 algcvgblem 12486 eucalgval2 12490 lcmmndc 12499 lcmdvds 12516 lcmid 12517 mulgcddvds 12531 cncongr2 12541 isprm3 12555 isprm4 12556 prm2orodd 12563 rpexp 12590 phivalfi 12649 phiprmpw 12659 phimullem 12662 eulerthlemfi 12665 hashgcdeq 12677 phisum 12678 pcxnn0cl 12748 pcge0 12751 pcdvdsb 12758 pcneg 12763 pcdvdstr 12765 pcgcd1 12766 pc2dvds 12768 pcz 12770 pcprmpw2 12771 pcmpt 12781 4sqlemafi 12833 4sqleminfi 12835 4sqexercise1 12836 4sqexercise2 12837 4sqlemsdc 12838 4sqlem11 12839 4sqlem19 12847 ennnfonelemim 12910 unbendc 12940 strsetsid 12980 mulgval 13573 mulgfng 13575 subgmulg 13639 znf1o 14528 psr1clfi 14565 ply1term 15330 dvply1 15352 perfectlem2 15587 lgsval 15596 lgsfvalg 15597 lgsfcl2 15598 lgscllem 15599 lgsval2lem 15602 lgsneg1 15617 lgsdir2 15625 lgsdirprm 15626 lgsdir 15627 lgsne0 15630 lgsprme0 15634 lgsdirnn0 15639 lgsdinn0 15640 lgsquadlem1 15669 lgsquadlem2 15670 lgsquad3 15676 2lgs 15696 2lgsoddprm 15705 2sqlem9 15716 nninffeq 16159 nconstwlpolem 16206 |
| Copyright terms: Public domain | W3C validator |