ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qletric Unicode version

Theorem qletric 10274
Description: Rational trichotomy. (Contributed by Jim Kingdon, 6-Oct-2021.)
Assertion
Ref Expression
qletric  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  <_  B  \/  B  <_  A ) )

Proof of Theorem qletric
StepHypRef Expression
1 qre 9655 . . 3  |-  ( A  e.  QQ  ->  A  e.  RR )
2 qre 9655 . . 3  |-  ( B  e.  QQ  ->  B  e.  RR )
31, 2anim12i 338 . 2  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  e.  RR  /\  B  e.  RR ) )
4 qtri3or 10273 . 2  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  <  B  \/  A  =  B  \/  B  <  A ) )
5 ltle 8075 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  A  <_  B )
)
6 orc 713 . . . 4  |-  ( A  <_  B  ->  ( A  <_  B  \/  B  <_  A ) )
75, 6syl6 33 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  ( A  <_  B  \/  B  <_  A ) ) )
8 eqle 8079 . . . . . 6  |-  ( ( A  e.  RR  /\  A  =  B )  ->  A  <_  B )
98ex 115 . . . . 5  |-  ( A  e.  RR  ->  ( A  =  B  ->  A  <_  B ) )
109adantr 276 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B  ->  A  <_  B
) )
1110, 6syl6 33 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B  ->  ( A  <_  B  \/  B  <_  A ) ) )
12 ltle 8075 . . . . 5  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  <  A  ->  B  <_  A )
)
1312ancoms 268 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( B  <  A  ->  B  <_  A )
)
14 olc 712 . . . 4  |-  ( B  <_  A  ->  ( A  <_  B  \/  B  <_  A ) )
1513, 14syl6 33 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( B  <  A  ->  ( A  <_  B  \/  B  <_  A ) ) )
167, 11, 153jaod 1315 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  < 
B  \/  A  =  B  \/  B  < 
A )  ->  ( A  <_  B  \/  B  <_  A ) ) )
173, 4, 16sylc 62 1  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  <_  B  \/  B  <_  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    \/ w3o 979    = wceq 1364    e. wcel 2160   class class class wbr 4018   RRcr 7840    < clt 8022    <_ cle 8023   QQcq 9649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-mulrcl 7940  ax-addcom 7941  ax-mulcom 7942  ax-addass 7943  ax-mulass 7944  ax-distr 7945  ax-i2m1 7946  ax-0lt1 7947  ax-1rid 7948  ax-0id 7949  ax-rnegex 7950  ax-precex 7951  ax-cnre 7952  ax-pre-ltirr 7953  ax-pre-ltwlin 7954  ax-pre-lttrn 7955  ax-pre-apti 7956  ax-pre-ltadd 7957  ax-pre-mulgt0 7958  ax-pre-mulext 7959
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-po 4314  df-iso 4315  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-fv 5243  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-1st 6165  df-2nd 6166  df-pnf 8024  df-mnf 8025  df-xr 8026  df-ltxr 8027  df-le 8028  df-sub 8160  df-neg 8161  df-reap 8562  df-ap 8569  df-div 8660  df-inn 8950  df-n0 9207  df-z 9284  df-q 9650  df-rp 9684
This theorem is referenced by:  qavgle  10289  qsqeqor  10662  qabsor  11116  qtopbas  14482
  Copyright terms: Public domain W3C validator