ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  7nn Unicode version

Theorem 7nn 9174
Description: 7 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
7nn  |-  7  e.  NN

Proof of Theorem 7nn
StepHypRef Expression
1 df-7 9071 . 2  |-  7  =  ( 6  +  1 )
2 6nn 9173 . . 3  |-  6  e.  NN
3 peano2nn 9019 . . 3  |-  ( 6  e.  NN  ->  (
6  +  1 )  e.  NN )
42, 3ax-mp 5 . 2  |-  ( 6  +  1 )  e.  NN
51, 4eqeltri 2269 1  |-  7  e.  NN
Colors of variables: wff set class
Syntax hints:    e. wcel 2167  (class class class)co 5925   1c1 7897    + caddc 7899   NNcn 9007   6c6 9062   7c7 9063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-sep 4152  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-iota 5220  df-fv 5267  df-ov 5928  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071
This theorem is referenced by:  8nn  9175  7nn0  9288  lgsval  15329  lgsfvalg  15330  lgsfcl2  15331  lgsval2lem  15335  lgsdir2lem1  15353  lgsdir2lem3  15355  lgsdir2  15358  lgsne0  15363  2lgs  15429  2lgsoddprm  15438
  Copyright terms: Public domain W3C validator