ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  7nn Unicode version

Theorem 7nn 9238
Description: 7 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
7nn  |-  7  e.  NN

Proof of Theorem 7nn
StepHypRef Expression
1 df-7 9135 . 2  |-  7  =  ( 6  +  1 )
2 6nn 9237 . . 3  |-  6  e.  NN
3 peano2nn 9083 . . 3  |-  ( 6  e.  NN  ->  (
6  +  1 )  e.  NN )
42, 3ax-mp 5 . 2  |-  ( 6  +  1 )  e.  NN
51, 4eqeltri 2280 1  |-  7  e.  NN
Colors of variables: wff set class
Syntax hints:    e. wcel 2178  (class class class)co 5967   1c1 7961    + caddc 7963   NNcn 9071   6c6 9126   7c7 9127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-sep 4178  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-iota 5251  df-fv 5298  df-ov 5970  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-5 9133  df-6 9134  df-7 9135
This theorem is referenced by:  8nn  9239  7nn0  9352  lgsval  15596  lgsfvalg  15597  lgsfcl2  15598  lgsval2lem  15602  lgsdir2lem1  15620  lgsdir2lem3  15622  lgsdir2  15625  lgsne0  15630  2lgs  15696  2lgsoddprm  15705
  Copyright terms: Public domain W3C validator