ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  7nn GIF version

Theorem 7nn 9223
Description: 7 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
7nn 7 ∈ ℕ

Proof of Theorem 7nn
StepHypRef Expression
1 df-7 9120 . 2 7 = (6 + 1)
2 6nn 9222 . . 3 6 ∈ ℕ
3 peano2nn 9068 . . 3 (6 ∈ ℕ → (6 + 1) ∈ ℕ)
42, 3ax-mp 5 . 2 (6 + 1) ∈ ℕ
51, 4eqeltri 2279 1 7 ∈ ℕ
Colors of variables: wff set class
Syntax hints:  wcel 2177  (class class class)co 5957  1c1 7946   + caddc 7948  cn 9056  6c6 9111  7c7 9112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-sep 4170  ax-cnex 8036  ax-resscn 8037  ax-1re 8039  ax-addrcl 8042
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-iota 5241  df-fv 5288  df-ov 5960  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-5 9118  df-6 9119  df-7 9120
This theorem is referenced by:  8nn  9224  7nn0  9337  lgsval  15556  lgsfvalg  15557  lgsfcl2  15558  lgsval2lem  15562  lgsdir2lem1  15580  lgsdir2lem3  15582  lgsdir2  15585  lgsne0  15590  2lgs  15656  2lgsoddprm  15665
  Copyright terms: Public domain W3C validator