| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 7nn | GIF version | ||
| Description: 7 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| 7nn | ⊢ 7 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-7 9073 | . 2 ⊢ 7 = (6 + 1) | |
| 2 | 6nn 9175 | . . 3 ⊢ 6 ∈ ℕ | |
| 3 | peano2nn 9021 | . . 3 ⊢ (6 ∈ ℕ → (6 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (6 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2269 | 1 ⊢ 7 ∈ ℕ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 (class class class)co 5925 1c1 7899 + caddc 7901 ℕcn 9009 6c6 9064 7c7 9065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7989 ax-resscn 7990 ax-1re 7992 ax-addrcl 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 df-inn 9010 df-2 9068 df-3 9069 df-4 9070 df-5 9071 df-6 9072 df-7 9073 |
| This theorem is referenced by: 8nn 9177 7nn0 9290 lgsval 15353 lgsfvalg 15354 lgsfcl2 15355 lgsval2lem 15359 lgsdir2lem1 15377 lgsdir2lem3 15379 lgsdir2 15382 lgsne0 15387 2lgs 15453 2lgsoddprm 15462 |
| Copyright terms: Public domain | W3C validator |