ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  7nn GIF version

Theorem 7nn 9044
Description: 7 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
7nn 7 ∈ ℕ

Proof of Theorem 7nn
StepHypRef Expression
1 df-7 8942 . 2 7 = (6 + 1)
2 6nn 9043 . . 3 6 ∈ ℕ
3 peano2nn 8890 . . 3 (6 ∈ ℕ → (6 + 1) ∈ ℕ)
42, 3ax-mp 5 . 2 (6 + 1) ∈ ℕ
51, 4eqeltri 2243 1 7 ∈ ℕ
Colors of variables: wff set class
Syntax hints:  wcel 2141  (class class class)co 5853  1c1 7775   + caddc 7777  cn 8878  6c6 8933  7c7 8934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-sep 4107  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-iota 5160  df-fv 5206  df-ov 5856  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-5 8940  df-6 8941  df-7 8942
This theorem is referenced by:  8nn  9045  7nn0  9157  lgsval  13699  lgsfvalg  13700  lgsfcl2  13701  lgsval2lem  13705  lgsdir2lem1  13723  lgsdir2lem3  13725  lgsdir2  13728  lgsne0  13733
  Copyright terms: Public domain W3C validator