ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  7nn GIF version

Theorem 7nn 9185
Description: 7 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
7nn 7 ∈ ℕ

Proof of Theorem 7nn
StepHypRef Expression
1 df-7 9082 . 2 7 = (6 + 1)
2 6nn 9184 . . 3 6 ∈ ℕ
3 peano2nn 9030 . . 3 (6 ∈ ℕ → (6 + 1) ∈ ℕ)
42, 3ax-mp 5 . 2 (6 + 1) ∈ ℕ
51, 4eqeltri 2277 1 7 ∈ ℕ
Colors of variables: wff set class
Syntax hints:  wcel 2175  (class class class)co 5934  1c1 7908   + caddc 7910  cn 9018  6c6 9073  7c7 9074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186  ax-sep 4161  ax-cnex 7998  ax-resscn 7999  ax-1re 8001  ax-addrcl 8004
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-iota 5229  df-fv 5276  df-ov 5937  df-inn 9019  df-2 9077  df-3 9078  df-4 9079  df-5 9080  df-6 9081  df-7 9082
This theorem is referenced by:  8nn  9186  7nn0  9299  lgsval  15399  lgsfvalg  15400  lgsfcl2  15401  lgsval2lem  15405  lgsdir2lem1  15423  lgsdir2lem3  15425  lgsdir2  15428  lgsne0  15433  2lgs  15499  2lgsoddprm  15508
  Copyright terms: Public domain W3C validator