| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 8nn | Unicode version | ||
| Description: 8 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| 8nn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-8 9175 |
. 2
| |
| 2 | 7nn 9277 |
. . 3
| |
| 3 | peano2nn 9122 |
. . 3
| |
| 4 | 2, 3 | ax-mp 5 |
. 2
|
| 5 | 1, 4 | eqeltri 2302 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4202 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-iota 5278 df-fv 5326 df-ov 6004 df-inn 9111 df-2 9169 df-3 9170 df-4 9171 df-5 9172 df-6 9173 df-7 9174 df-8 9175 |
| This theorem is referenced by: 9nn 9279 8nn0 9392 ipndx 13202 ipid 13203 ipslid 13204 ipsstrd 13209 lgsval 15683 lgsfvalg 15684 lgsfcl2 15685 lgsval2lem 15689 lgsdir2lem1 15707 lgsdir2lem2 15708 lgsdir2lem3 15709 lgsdir2lem4 15710 lgsdir2lem5 15711 lgsdir2 15712 lgsne0 15717 2lgslem3a1 15776 2lgslem3b1 15777 2lgslem3c1 15778 2lgslem3d1 15779 2lgslem4 15782 2lgs 15783 2lgsoddprmlem2 15785 2lgsoddprm 15792 edgfid 15807 edgfndx 15808 edgfndxnn 15809 |
| Copyright terms: Public domain | W3C validator |