| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 8nn | Unicode version | ||
| Description: 8 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| 8nn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-8 9103 |
. 2
| |
| 2 | 7nn 9205 |
. . 3
| |
| 3 | peano2nn 9050 |
. . 3
| |
| 4 | 2, 3 | ax-mp 5 |
. 2
|
| 5 | 1, 4 | eqeltri 2278 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4163 ax-cnex 8018 ax-resscn 8019 ax-1re 8021 ax-addrcl 8024 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-iota 5233 df-fv 5280 df-ov 5949 df-inn 9039 df-2 9097 df-3 9098 df-4 9099 df-5 9100 df-6 9101 df-7 9102 df-8 9103 |
| This theorem is referenced by: 9nn 9207 8nn0 9320 ipndx 13034 ipid 13035 ipslid 13036 ipsstrd 13041 lgsval 15514 lgsfvalg 15515 lgsfcl2 15516 lgsval2lem 15520 lgsdir2lem1 15538 lgsdir2lem2 15539 lgsdir2lem3 15540 lgsdir2lem4 15541 lgsdir2lem5 15542 lgsdir2 15543 lgsne0 15548 2lgslem3a1 15607 2lgslem3b1 15608 2lgslem3c1 15609 2lgslem3d1 15610 2lgslem4 15613 2lgs 15614 2lgsoddprmlem2 15616 2lgsoddprm 15623 edgfid 15638 edgfndx 15639 edgfndxnn 15640 |
| Copyright terms: Public domain | W3C validator |