| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 8nn | Unicode version | ||
| Description: 8 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) | 
| Ref | Expression | 
|---|---|
| 8nn | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-8 9055 | 
. 2
 | |
| 2 | 7nn 9157 | 
. . 3
 | |
| 3 | peano2nn 9002 | 
. . 3
 | |
| 4 | 2, 3 | ax-mp 5 | 
. 2
 | 
| 5 | 1, 4 | eqeltri 2269 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4151 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-7 9054 df-8 9055 | 
| This theorem is referenced by: 9nn 9159 8nn0 9272 ipndx 12846 ipid 12847 ipslid 12848 ipsstrd 12853 lgsval 15245 lgsfvalg 15246 lgsfcl2 15247 lgsval2lem 15251 lgsdir2lem1 15269 lgsdir2lem2 15270 lgsdir2lem3 15271 lgsdir2lem4 15272 lgsdir2lem5 15273 lgsdir2 15274 lgsne0 15279 2lgslem3a1 15338 2lgslem3b1 15339 2lgslem3c1 15340 2lgslem3d1 15341 2lgslem4 15344 2lgs 15345 2lgsoddprmlem2 15347 2lgsoddprm 15354 | 
| Copyright terms: Public domain | W3C validator |