| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 8nn | Unicode version | ||
| Description: 8 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| 8nn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-8 9136 |
. 2
| |
| 2 | 7nn 9238 |
. . 3
| |
| 3 | peano2nn 9083 |
. . 3
| |
| 4 | 2, 3 | ax-mp 5 |
. 2
|
| 5 | 1, 4 | eqeltri 2280 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-sep 4178 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-5 9133 df-6 9134 df-7 9135 df-8 9136 |
| This theorem is referenced by: 9nn 9240 8nn0 9353 ipndx 13116 ipid 13117 ipslid 13118 ipsstrd 13123 lgsval 15596 lgsfvalg 15597 lgsfcl2 15598 lgsval2lem 15602 lgsdir2lem1 15620 lgsdir2lem2 15621 lgsdir2lem3 15622 lgsdir2lem4 15623 lgsdir2lem5 15624 lgsdir2 15625 lgsne0 15630 2lgslem3a1 15689 2lgslem3b1 15690 2lgslem3c1 15691 2lgslem3d1 15692 2lgslem4 15695 2lgs 15696 2lgsoddprmlem2 15698 2lgsoddprm 15705 edgfid 15720 edgfndx 15721 edgfndxnn 15722 |
| Copyright terms: Public domain | W3C validator |