![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 7nn0 | GIF version |
Description: 7 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
7nn0 | ⊢ 7 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 7nn 9103 | . 2 ⊢ 7 ∈ ℕ | |
2 | 1 | nnnn0i 9202 | 1 ⊢ 7 ∈ ℕ0 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2160 7c7 8993 ℕ0cn0 9194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 ax-sep 4136 ax-cnex 7920 ax-resscn 7921 ax-1re 7923 ax-addrcl 7926 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-br 4019 df-iota 5193 df-fv 5239 df-ov 5894 df-inn 8938 df-2 8996 df-3 8997 df-4 8998 df-5 8999 df-6 9000 df-7 9001 df-n0 9195 |
This theorem is referenced by: 7p4e11 9477 7p5e12 9478 7p6e13 9479 7p7e14 9480 8p8e16 9487 9p8e17 9494 9p9e18 9495 7t3e21 9511 7t4e28 9512 7t5e35 9513 7t6e42 9514 7t7e49 9515 8t8e64 9522 9t3e27 9524 9t4e36 9525 9t8e72 9529 9t9e81 9530 |
Copyright terms: Public domain | W3C validator |