| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 7nn0 | GIF version | ||
| Description: 7 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) | 
| Ref | Expression | 
|---|---|
| 7nn0 | ⊢ 7 ∈ ℕ0 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 7nn 9157 | . 2 ⊢ 7 ∈ ℕ | |
| 2 | 1 | nnnn0i 9257 | 1 ⊢ 7 ∈ ℕ0 | 
| Colors of variables: wff set class | 
| Syntax hints: ∈ wcel 2167 7c7 9046 ℕ0cn0 9249 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4151 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-7 9054 df-n0 9250 | 
| This theorem is referenced by: 7p4e11 9532 7p5e12 9533 7p6e13 9534 7p7e14 9535 8p8e16 9542 9p8e17 9549 9p9e18 9550 7t3e21 9566 7t4e28 9567 7t5e35 9568 7t6e42 9569 7t7e49 9570 8t8e64 9577 9t3e27 9579 9t4e36 9580 9t8e72 9584 9t9e81 9585 | 
| Copyright terms: Public domain | W3C validator |