ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  7nn0 GIF version

Theorem 7nn0 9299
Description: 7 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.)
Assertion
Ref Expression
7nn0 7 ∈ ℕ0

Proof of Theorem 7nn0
StepHypRef Expression
1 7nn 9185 . 2 7 ∈ ℕ
21nnnn0i 9285 1 7 ∈ ℕ0
Colors of variables: wff set class
Syntax hints:  wcel 2175  7c7 9074  0cn0 9277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186  ax-sep 4161  ax-cnex 7998  ax-resscn 7999  ax-1re 8001  ax-addrcl 8004
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-iota 5229  df-fv 5276  df-ov 5937  df-inn 9019  df-2 9077  df-3 9078  df-4 9079  df-5 9080  df-6 9081  df-7 9082  df-n0 9278
This theorem is referenced by:  7p4e11  9561  7p5e12  9562  7p6e13  9563  7p7e14  9564  8p8e16  9571  9p8e17  9578  9p9e18  9579  7t3e21  9595  7t4e28  9596  7t5e35  9597  7t6e42  9598  7t7e49  9599  8t8e64  9606  9t3e27  9608  9t4e36  9609  9t8e72  9613  9t9e81  9614
  Copyright terms: Public domain W3C validator