ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  7nn0 GIF version

Theorem 7nn0 9136
Description: 7 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.)
Assertion
Ref Expression
7nn0 7 ∈ ℕ0

Proof of Theorem 7nn0
StepHypRef Expression
1 7nn 9023 . 2 7 ∈ ℕ
21nnnn0i 9122 1 7 ∈ ℕ0
Colors of variables: wff set class
Syntax hints:  wcel 2136  7c7 8913  0cn0 9114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-sep 4100  ax-cnex 7844  ax-resscn 7845  ax-1re 7847  ax-addrcl 7850
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-iota 5153  df-fv 5196  df-ov 5845  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-5 8919  df-6 8920  df-7 8921  df-n0 9115
This theorem is referenced by:  7p4e11  9397  7p5e12  9398  7p6e13  9399  7p7e14  9400  8p8e16  9407  9p8e17  9414  9p9e18  9415  7t3e21  9431  7t4e28  9432  7t5e35  9433  7t6e42  9434  7t7e49  9435  8t8e64  9442  9t3e27  9444  9t4e36  9445  9t8e72  9449  9t9e81  9450
  Copyright terms: Public domain W3C validator