![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 7nn0 | GIF version |
Description: 7 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
7nn0 | ⊢ 7 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 7nn 9148 | . 2 ⊢ 7 ∈ ℕ | |
2 | 1 | nnnn0i 9248 | 1 ⊢ 7 ∈ ℕ0 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 7c7 9038 ℕ0cn0 9240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4147 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-iota 5215 df-fv 5262 df-ov 5921 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 df-7 9046 df-n0 9241 |
This theorem is referenced by: 7p4e11 9523 7p5e12 9524 7p6e13 9525 7p7e14 9526 8p8e16 9533 9p8e17 9540 9p9e18 9541 7t3e21 9557 7t4e28 9558 7t5e35 9559 7t6e42 9560 7t7e49 9561 8t8e64 9568 9t3e27 9570 9t4e36 9571 9t8e72 9575 9t9e81 9576 |
Copyright terms: Public domain | W3C validator |