ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clim0 Unicode version

Theorem clim0 11212
Description: Express the predicate  F converges to  0. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
clim0.1  |-  Z  =  ( ZZ>= `  M )
clim0.2  |-  ( ph  ->  M  e.  ZZ )
clim0.3  |-  ( ph  ->  F  e.  V )
clim0.4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )
Assertion
Ref Expression
clim0  |-  ( ph  ->  ( F  ~~>  0  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  B
)  <  x )
) )
Distinct variable groups:    j, k, x, F    j, M    ph, j,
k, x    j, Z, k
Allowed substitution hints:    B( x, j, k)    M( x, k)    V( x, j, k)    Z( x)

Proof of Theorem clim0
StepHypRef Expression
1 clim0.1 . . 3  |-  Z  =  ( ZZ>= `  M )
2 clim0.2 . . 3  |-  ( ph  ->  M  e.  ZZ )
3 clim0.3 . . 3  |-  ( ph  ->  F  e.  V )
4 clim0.4 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )
51, 2, 3, 4clim2 11210 . 2  |-  ( ph  ->  ( F  ~~>  0  <->  (
0  e.  CC  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  ( B  -  0 ) )  <  x ) ) ) )
6 0cn 7882 . . . 4  |-  0  e.  CC
76biantrur 301 . . 3  |-  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  ( B  -  0 ) )  <  x )  <-> 
( 0  e.  CC  /\ 
A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( B  e.  CC  /\  ( abs `  ( B  - 
0 ) )  < 
x ) ) )
8 subid1 8109 . . . . . . . . 9  |-  ( B  e.  CC  ->  ( B  -  0 )  =  B )
98fveq2d 5484 . . . . . . . 8  |-  ( B  e.  CC  ->  ( abs `  ( B  - 
0 ) )  =  ( abs `  B
) )
109breq1d 3986 . . . . . . 7  |-  ( B  e.  CC  ->  (
( abs `  ( B  -  0 ) )  <  x  <->  ( abs `  B )  <  x
) )
1110pm5.32i 450 . . . . . 6  |-  ( ( B  e.  CC  /\  ( abs `  ( B  -  0 ) )  <  x )  <->  ( B  e.  CC  /\  ( abs `  B )  <  x
) )
1211ralbii 2470 . . . . 5  |-  ( A. k  e.  ( ZZ>= `  j ) ( B  e.  CC  /\  ( abs `  ( B  - 
0 ) )  < 
x )  <->  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  B
)  <  x )
)
1312rexbii 2471 . . . 4  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( B  e.  CC  /\  ( abs `  ( B  - 
0 ) )  < 
x )  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  B
)  <  x )
)
1413ralbii 2470 . . 3  |-  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  ( B  -  0 ) )  <  x )  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  B
)  <  x )
)
157, 14bitr3i 185 . 2  |-  ( ( 0  e.  CC  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  ( B  -  0 ) )  <  x ) )  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( B  e.  CC  /\  ( abs `  B )  < 
x ) )
165, 15bitrdi 195 1  |-  ( ph  ->  ( F  ~~>  0  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  B
)  <  x )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1342    e. wcel 2135   A.wral 2442   E.wrex 2443   class class class wbr 3976   ` cfv 5182  (class class class)co 5836   CCcc 7742   0cc0 7744    < clt 7924    - cmin 8060   ZZcz 9182   ZZ>=cuz 9457   RR+crp 9580   abscabs 10925    ~~> cli 11205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-addcom 7844  ax-addass 7846  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-0id 7852  ax-rnegex 7853  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-br 3977  df-opab 4038  df-mpt 4039  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-inn 8849  df-n0 9106  df-z 9183  df-uz 9458  df-clim 11206
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator