ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oddennn Unicode version

Theorem oddennn 12376
Description: There are as many odd positive integers as there are positive integers. (Contributed by Jim Kingdon, 11-May-2022.)
Assertion
Ref Expression
oddennn  |-  { z  e.  NN  |  -.  2  ||  z }  ~~  NN

Proof of Theorem oddennn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnex 8914 . . 3  |-  NN  e.  _V
21rabex 4144 . 2  |-  { z  e.  NN  |  -.  2  ||  z }  e.  _V
3 elrabi 2890 . . . 4  |-  ( x  e.  { z  e.  NN  |  -.  2  ||  z }  ->  x  e.  NN )
43peano2nnd 8923 . . 3  |-  ( x  e.  { z  e.  NN  |  -.  2  ||  z }  ->  (
x  +  1 )  e.  NN )
5 breq2 4004 . . . . . . 7  |-  ( z  =  x  ->  (
2  ||  z  <->  2  ||  x ) )
65notbid 667 . . . . . 6  |-  ( z  =  x  ->  ( -.  2  ||  z  <->  -.  2  ||  x ) )
76elrab 2893 . . . . 5  |-  ( x  e.  { z  e.  NN  |  -.  2  ||  z }  <->  ( x  e.  NN  /\  -.  2  ||  x ) )
87simprbi 275 . . . 4  |-  ( x  e.  { z  e.  NN  |  -.  2  ||  z }  ->  -.  2  ||  x )
93nnzd 9363 . . . . 5  |-  ( x  e.  { z  e.  NN  |  -.  2  ||  z }  ->  x  e.  ZZ )
10 oddp1even 11864 . . . . 5  |-  ( x  e.  ZZ  ->  ( -.  2  ||  x  <->  2  ||  ( x  +  1
) ) )
119, 10syl 14 . . . 4  |-  ( x  e.  { z  e.  NN  |  -.  2  ||  z }  ->  ( -.  2  ||  x  <->  2  ||  ( x  +  1
) ) )
128, 11mpbid 147 . . 3  |-  ( x  e.  { z  e.  NN  |  -.  2  ||  z }  ->  2  ||  ( x  +  1 ) )
13 nnehalf 11892 . . 3  |-  ( ( ( x  +  1 )  e.  NN  /\  2  ||  ( x  + 
1 ) )  -> 
( ( x  + 
1 )  /  2
)  e.  NN )
144, 12, 13syl2anc 411 . 2  |-  ( x  e.  { z  e.  NN  |  -.  2  ||  z }  ->  (
( x  +  1 )  /  2 )  e.  NN )
15 nnz 9261 . . . . . 6  |-  ( y  e.  NN  ->  y  e.  ZZ )
16 2z 9270 . . . . . . 7  |-  2  e.  ZZ
1716a1i 9 . . . . . 6  |-  ( y  e.  NN  ->  2  e.  ZZ )
1815, 17zmulcld 9370 . . . . 5  |-  ( y  e.  NN  ->  (
y  x.  2 )  e.  ZZ )
19 peano2zm 9280 . . . . 5  |-  ( ( y  x.  2 )  e.  ZZ  ->  (
( y  x.  2 )  -  1 )  e.  ZZ )
2018, 19syl 14 . . . 4  |-  ( y  e.  NN  ->  (
( y  x.  2 )  -  1 )  e.  ZZ )
21 1e2m1 9027 . . . . 5  |-  1  =  ( 2  -  1 )
2217zred 9364 . . . . . 6  |-  ( y  e.  NN  ->  2  e.  RR )
23 nnre 8915 . . . . . . 7  |-  ( y  e.  NN  ->  y  e.  RR )
2423, 22remulcld 7978 . . . . . 6  |-  ( y  e.  NN  ->  (
y  x.  2 )  e.  RR )
25 1red 7963 . . . . . 6  |-  ( y  e.  NN  ->  1  e.  RR )
26 0le2 8998 . . . . . . . 8  |-  0  <_  2
2726a1i 9 . . . . . . 7  |-  ( y  e.  NN  ->  0  <_  2 )
28 nnge1 8931 . . . . . . 7  |-  ( y  e.  NN  ->  1  <_  y )
2922, 23, 27, 28lemulge12d 8884 . . . . . 6  |-  ( y  e.  NN  ->  2  <_  ( y  x.  2 ) )
3022, 24, 25, 29lesub1dd 8508 . . . . 5  |-  ( y  e.  NN  ->  (
2  -  1 )  <_  ( ( y  x.  2 )  - 
1 ) )
3121, 30eqbrtrid 4035 . . . 4  |-  ( y  e.  NN  ->  1  <_  ( ( y  x.  2 )  -  1 ) )
32 elnnz1 9265 . . . 4  |-  ( ( ( y  x.  2 )  -  1 )  e.  NN  <->  ( (
( y  x.  2 )  -  1 )  e.  ZZ  /\  1  <_  ( ( y  x.  2 )  -  1 ) ) )
3320, 31, 32sylanbrc 417 . . 3  |-  ( y  e.  NN  ->  (
( y  x.  2 )  -  1 )  e.  NN )
34 dvdsmul2 11805 . . . . 5  |-  ( ( y  e.  ZZ  /\  2  e.  ZZ )  ->  2  ||  ( y  x.  2 ) )
3515, 16, 34sylancl 413 . . . 4  |-  ( y  e.  NN  ->  2  ||  ( y  x.  2 ) )
36 oddm1even 11863 . . . . . 6  |-  ( ( y  x.  2 )  e.  ZZ  ->  ( -.  2  ||  ( y  x.  2 )  <->  2  ||  ( ( y  x.  2 )  -  1 ) ) )
3718, 36syl 14 . . . . 5  |-  ( y  e.  NN  ->  ( -.  2  ||  ( y  x.  2 )  <->  2  ||  ( ( y  x.  2 )  -  1 ) ) )
3837biimprd 158 . . . 4  |-  ( y  e.  NN  ->  (
2  ||  ( (
y  x.  2 )  -  1 )  ->  -.  2  ||  ( y  x.  2 ) ) )
3935, 38mt2d 625 . . 3  |-  ( y  e.  NN  ->  -.  2  ||  ( ( y  x.  2 )  - 
1 ) )
40 breq2 4004 . . . . 5  |-  ( z  =  ( ( y  x.  2 )  - 
1 )  ->  (
2  ||  z  <->  2  ||  ( ( y  x.  2 )  -  1 ) ) )
4140notbid 667 . . . 4  |-  ( z  =  ( ( y  x.  2 )  - 
1 )  ->  ( -.  2  ||  z  <->  -.  2  ||  ( ( y  x.  2 )  -  1 ) ) )
4241elrab 2893 . . 3  |-  ( ( ( y  x.  2 )  -  1 )  e.  { z  e.  NN  |  -.  2  ||  z }  <->  ( (
( y  x.  2 )  -  1 )  e.  NN  /\  -.  2  ||  ( ( y  x.  2 )  - 
1 ) ) )
4333, 39, 42sylanbrc 417 . 2  |-  ( y  e.  NN  ->  (
( y  x.  2 )  -  1 )  e.  { z  e.  NN  |  -.  2  ||  z } )
443adantr 276 . . . . . . 7  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z }  /\  y  e.  NN )  ->  x  e.  NN )
4544nncnd 8922 . . . . . 6  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z }  /\  y  e.  NN )  ->  x  e.  CC )
46 1cnd 7964 . . . . . 6  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z }  /\  y  e.  NN )  ->  1  e.  CC )
4745, 46addcld 7967 . . . . 5  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z }  /\  y  e.  NN )  ->  ( x  +  1 )  e.  CC )
48 simpr 110 . . . . . 6  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z }  /\  y  e.  NN )  ->  y  e.  NN )
4948nncnd 8922 . . . . 5  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z }  /\  y  e.  NN )  ->  y  e.  CC )
50 2cnd 8981 . . . . 5  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z }  /\  y  e.  NN )  ->  2  e.  CC )
51 2ap0 9001 . . . . . 6  |-  2 #  0
5251a1i 9 . . . . 5  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z }  /\  y  e.  NN )  ->  2 #  0 )
5347, 49, 50, 52divmulap3d 8771 . . . 4  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z }  /\  y  e.  NN )  ->  ( ( ( x  +  1 )  / 
2 )  =  y  <-> 
( x  +  1 )  =  ( y  x.  2 ) ) )
5449, 50mulcld 7968 . . . . 5  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z }  /\  y  e.  NN )  ->  ( y  x.  2 )  e.  CC )
5545, 46, 54addlsub 8317 . . . 4  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z }  /\  y  e.  NN )  ->  ( ( x  + 
1 )  =  ( y  x.  2 )  <-> 
x  =  ( ( y  x.  2 )  -  1 ) ) )
5653, 55bitrd 188 . . 3  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z }  /\  y  e.  NN )  ->  ( ( ( x  +  1 )  / 
2 )  =  y  <-> 
x  =  ( ( y  x.  2 )  -  1 ) ) )
57 eqcom 2179 . . 3  |-  ( ( ( x  +  1 )  /  2 )  =  y  <->  y  =  ( ( x  + 
1 )  /  2
) )
5856, 57bitr3di 195 . 2  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z }  /\  y  e.  NN )  ->  ( x  =  ( ( y  x.  2 )  -  1 )  <-> 
y  =  ( ( x  +  1 )  /  2 ) ) )
592, 1, 14, 43, 58en3i 6765 1  |-  { z  e.  NN  |  -.  2  ||  z }  ~~  NN
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   {crab 2459   class class class wbr 4000  (class class class)co 5869    ~~ cen 6732   0cc0 7802   1c1 7803    + caddc 7805    x. cmul 7807    <_ cle 7983    - cmin 8118   # cap 8528    / cdiv 8618   NNcn 8908   2c2 8959   ZZcz 9242    || cdvds 11778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-xor 1376  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-po 4293  df-iso 4294  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-en 6735  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-n0 9166  df-z 9243  df-dvds 11779
This theorem is referenced by:  xpnnen  12378  unennn  12381
  Copyright terms: Public domain W3C validator