ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oddennn Unicode version

Theorem oddennn 12796
Description: There are as many odd positive integers as there are positive integers. (Contributed by Jim Kingdon, 11-May-2022.)
Assertion
Ref Expression
oddennn  |-  { z  e.  NN  |  -.  2  ||  z }  ~~  NN

Proof of Theorem oddennn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnex 9044 . . 3  |-  NN  e.  _V
21rabex 4189 . 2  |-  { z  e.  NN  |  -.  2  ||  z }  e.  _V
3 elrabi 2926 . . . 4  |-  ( x  e.  { z  e.  NN  |  -.  2  ||  z }  ->  x  e.  NN )
43peano2nnd 9053 . . 3  |-  ( x  e.  { z  e.  NN  |  -.  2  ||  z }  ->  (
x  +  1 )  e.  NN )
5 breq2 4049 . . . . . . 7  |-  ( z  =  x  ->  (
2  ||  z  <->  2  ||  x ) )
65notbid 669 . . . . . 6  |-  ( z  =  x  ->  ( -.  2  ||  z  <->  -.  2  ||  x ) )
76elrab 2929 . . . . 5  |-  ( x  e.  { z  e.  NN  |  -.  2  ||  z }  <->  ( x  e.  NN  /\  -.  2  ||  x ) )
87simprbi 275 . . . 4  |-  ( x  e.  { z  e.  NN  |  -.  2  ||  z }  ->  -.  2  ||  x )
93nnzd 9496 . . . . 5  |-  ( x  e.  { z  e.  NN  |  -.  2  ||  z }  ->  x  e.  ZZ )
10 oddp1even 12220 . . . . 5  |-  ( x  e.  ZZ  ->  ( -.  2  ||  x  <->  2  ||  ( x  +  1
) ) )
119, 10syl 14 . . . 4  |-  ( x  e.  { z  e.  NN  |  -.  2  ||  z }  ->  ( -.  2  ||  x  <->  2  ||  ( x  +  1
) ) )
128, 11mpbid 147 . . 3  |-  ( x  e.  { z  e.  NN  |  -.  2  ||  z }  ->  2  ||  ( x  +  1 ) )
13 nnehalf 12248 . . 3  |-  ( ( ( x  +  1 )  e.  NN  /\  2  ||  ( x  + 
1 ) )  -> 
( ( x  + 
1 )  /  2
)  e.  NN )
144, 12, 13syl2anc 411 . 2  |-  ( x  e.  { z  e.  NN  |  -.  2  ||  z }  ->  (
( x  +  1 )  /  2 )  e.  NN )
15 nnz 9393 . . . . . 6  |-  ( y  e.  NN  ->  y  e.  ZZ )
16 2z 9402 . . . . . . 7  |-  2  e.  ZZ
1716a1i 9 . . . . . 6  |-  ( y  e.  NN  ->  2  e.  ZZ )
1815, 17zmulcld 9503 . . . . 5  |-  ( y  e.  NN  ->  (
y  x.  2 )  e.  ZZ )
19 peano2zm 9412 . . . . 5  |-  ( ( y  x.  2 )  e.  ZZ  ->  (
( y  x.  2 )  -  1 )  e.  ZZ )
2018, 19syl 14 . . . 4  |-  ( y  e.  NN  ->  (
( y  x.  2 )  -  1 )  e.  ZZ )
21 1e2m1 9157 . . . . 5  |-  1  =  ( 2  -  1 )
2217zred 9497 . . . . . 6  |-  ( y  e.  NN  ->  2  e.  RR )
23 nnre 9045 . . . . . . 7  |-  ( y  e.  NN  ->  y  e.  RR )
2423, 22remulcld 8105 . . . . . 6  |-  ( y  e.  NN  ->  (
y  x.  2 )  e.  RR )
25 1red 8089 . . . . . 6  |-  ( y  e.  NN  ->  1  e.  RR )
26 0le2 9128 . . . . . . . 8  |-  0  <_  2
2726a1i 9 . . . . . . 7  |-  ( y  e.  NN  ->  0  <_  2 )
28 nnge1 9061 . . . . . . 7  |-  ( y  e.  NN  ->  1  <_  y )
2922, 23, 27, 28lemulge12d 9013 . . . . . 6  |-  ( y  e.  NN  ->  2  <_  ( y  x.  2 ) )
3022, 24, 25, 29lesub1dd 8636 . . . . 5  |-  ( y  e.  NN  ->  (
2  -  1 )  <_  ( ( y  x.  2 )  - 
1 ) )
3121, 30eqbrtrid 4080 . . . 4  |-  ( y  e.  NN  ->  1  <_  ( ( y  x.  2 )  -  1 ) )
32 elnnz1 9397 . . . 4  |-  ( ( ( y  x.  2 )  -  1 )  e.  NN  <->  ( (
( y  x.  2 )  -  1 )  e.  ZZ  /\  1  <_  ( ( y  x.  2 )  -  1 ) ) )
3320, 31, 32sylanbrc 417 . . 3  |-  ( y  e.  NN  ->  (
( y  x.  2 )  -  1 )  e.  NN )
34 dvdsmul2 12158 . . . . 5  |-  ( ( y  e.  ZZ  /\  2  e.  ZZ )  ->  2  ||  ( y  x.  2 ) )
3515, 16, 34sylancl 413 . . . 4  |-  ( y  e.  NN  ->  2  ||  ( y  x.  2 ) )
36 oddm1even 12219 . . . . . 6  |-  ( ( y  x.  2 )  e.  ZZ  ->  ( -.  2  ||  ( y  x.  2 )  <->  2  ||  ( ( y  x.  2 )  -  1 ) ) )
3718, 36syl 14 . . . . 5  |-  ( y  e.  NN  ->  ( -.  2  ||  ( y  x.  2 )  <->  2  ||  ( ( y  x.  2 )  -  1 ) ) )
3837biimprd 158 . . . 4  |-  ( y  e.  NN  ->  (
2  ||  ( (
y  x.  2 )  -  1 )  ->  -.  2  ||  ( y  x.  2 ) ) )
3935, 38mt2d 626 . . 3  |-  ( y  e.  NN  ->  -.  2  ||  ( ( y  x.  2 )  - 
1 ) )
40 breq2 4049 . . . . 5  |-  ( z  =  ( ( y  x.  2 )  - 
1 )  ->  (
2  ||  z  <->  2  ||  ( ( y  x.  2 )  -  1 ) ) )
4140notbid 669 . . . 4  |-  ( z  =  ( ( y  x.  2 )  - 
1 )  ->  ( -.  2  ||  z  <->  -.  2  ||  ( ( y  x.  2 )  -  1 ) ) )
4241elrab 2929 . . 3  |-  ( ( ( y  x.  2 )  -  1 )  e.  { z  e.  NN  |  -.  2  ||  z }  <->  ( (
( y  x.  2 )  -  1 )  e.  NN  /\  -.  2  ||  ( ( y  x.  2 )  - 
1 ) ) )
4333, 39, 42sylanbrc 417 . 2  |-  ( y  e.  NN  ->  (
( y  x.  2 )  -  1 )  e.  { z  e.  NN  |  -.  2  ||  z } )
443adantr 276 . . . . . . 7  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z }  /\  y  e.  NN )  ->  x  e.  NN )
4544nncnd 9052 . . . . . 6  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z }  /\  y  e.  NN )  ->  x  e.  CC )
46 1cnd 8090 . . . . . 6  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z }  /\  y  e.  NN )  ->  1  e.  CC )
4745, 46addcld 8094 . . . . 5  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z }  /\  y  e.  NN )  ->  ( x  +  1 )  e.  CC )
48 simpr 110 . . . . . 6  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z }  /\  y  e.  NN )  ->  y  e.  NN )
4948nncnd 9052 . . . . 5  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z }  /\  y  e.  NN )  ->  y  e.  CC )
50 2cnd 9111 . . . . 5  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z }  /\  y  e.  NN )  ->  2  e.  CC )
51 2ap0 9131 . . . . . 6  |-  2 #  0
5251a1i 9 . . . . 5  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z }  /\  y  e.  NN )  ->  2 #  0 )
5347, 49, 50, 52divmulap3d 8900 . . . 4  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z }  /\  y  e.  NN )  ->  ( ( ( x  +  1 )  / 
2 )  =  y  <-> 
( x  +  1 )  =  ( y  x.  2 ) ) )
5449, 50mulcld 8095 . . . . 5  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z }  /\  y  e.  NN )  ->  ( y  x.  2 )  e.  CC )
5545, 46, 54addlsub 8444 . . . 4  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z }  /\  y  e.  NN )  ->  ( ( x  + 
1 )  =  ( y  x.  2 )  <-> 
x  =  ( ( y  x.  2 )  -  1 ) ) )
5653, 55bitrd 188 . . 3  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z }  /\  y  e.  NN )  ->  ( ( ( x  +  1 )  / 
2 )  =  y  <-> 
x  =  ( ( y  x.  2 )  -  1 ) ) )
57 eqcom 2207 . . 3  |-  ( ( ( x  +  1 )  /  2 )  =  y  <->  y  =  ( ( x  + 
1 )  /  2
) )
5856, 57bitr3di 195 . 2  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z }  /\  y  e.  NN )  ->  ( x  =  ( ( y  x.  2 )  -  1 )  <-> 
y  =  ( ( x  +  1 )  /  2 ) ) )
592, 1, 14, 43, 58en3i 6864 1  |-  { z  e.  NN  |  -.  2  ||  z }  ~~  NN
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   {crab 2488   class class class wbr 4045  (class class class)co 5946    ~~ cen 6827   0cc0 7927   1c1 7928    + caddc 7930    x. cmul 7932    <_ cle 8110    - cmin 8245   # cap 8656    / cdiv 8747   NNcn 9038   2c2 9089   ZZcz 9374    || cdvds 12131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-xor 1396  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-po 4344  df-iso 4345  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-en 6830  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-2 9097  df-n0 9298  df-z 9375  df-dvds 12132
This theorem is referenced by:  xpnnen  12798  unennn  12801
  Copyright terms: Public domain W3C validator