| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oddennn | Unicode version | ||
| Description: There are as many odd positive integers as there are positive integers. (Contributed by Jim Kingdon, 11-May-2022.) |
| Ref | Expression |
|---|---|
| oddennn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnex 9042 |
. . 3
| |
| 2 | 1 | rabex 4188 |
. 2
|
| 3 | elrabi 2926 |
. . . 4
| |
| 4 | 3 | peano2nnd 9051 |
. . 3
|
| 5 | breq2 4048 |
. . . . . . 7
| |
| 6 | 5 | notbid 669 |
. . . . . 6
|
| 7 | 6 | elrab 2929 |
. . . . 5
|
| 8 | 7 | simprbi 275 |
. . . 4
|
| 9 | 3 | nnzd 9494 |
. . . . 5
|
| 10 | oddp1even 12187 |
. . . . 5
| |
| 11 | 9, 10 | syl 14 |
. . . 4
|
| 12 | 8, 11 | mpbid 147 |
. . 3
|
| 13 | nnehalf 12215 |
. . 3
| |
| 14 | 4, 12, 13 | syl2anc 411 |
. 2
|
| 15 | nnz 9391 |
. . . . . 6
| |
| 16 | 2z 9400 |
. . . . . . 7
| |
| 17 | 16 | a1i 9 |
. . . . . 6
|
| 18 | 15, 17 | zmulcld 9501 |
. . . . 5
|
| 19 | peano2zm 9410 |
. . . . 5
| |
| 20 | 18, 19 | syl 14 |
. . . 4
|
| 21 | 1e2m1 9155 |
. . . . 5
| |
| 22 | 17 | zred 9495 |
. . . . . 6
|
| 23 | nnre 9043 |
. . . . . . 7
| |
| 24 | 23, 22 | remulcld 8103 |
. . . . . 6
|
| 25 | 1red 8087 |
. . . . . 6
| |
| 26 | 0le2 9126 |
. . . . . . . 8
| |
| 27 | 26 | a1i 9 |
. . . . . . 7
|
| 28 | nnge1 9059 |
. . . . . . 7
| |
| 29 | 22, 23, 27, 28 | lemulge12d 9011 |
. . . . . 6
|
| 30 | 22, 24, 25, 29 | lesub1dd 8634 |
. . . . 5
|
| 31 | 21, 30 | eqbrtrid 4079 |
. . . 4
|
| 32 | elnnz1 9395 |
. . . 4
| |
| 33 | 20, 31, 32 | sylanbrc 417 |
. . 3
|
| 34 | dvdsmul2 12125 |
. . . . 5
| |
| 35 | 15, 16, 34 | sylancl 413 |
. . . 4
|
| 36 | oddm1even 12186 |
. . . . . 6
| |
| 37 | 18, 36 | syl 14 |
. . . . 5
|
| 38 | 37 | biimprd 158 |
. . . 4
|
| 39 | 35, 38 | mt2d 626 |
. . 3
|
| 40 | breq2 4048 |
. . . . 5
| |
| 41 | 40 | notbid 669 |
. . . 4
|
| 42 | 41 | elrab 2929 |
. . 3
|
| 43 | 33, 39, 42 | sylanbrc 417 |
. 2
|
| 44 | 3 | adantr 276 |
. . . . . . 7
|
| 45 | 44 | nncnd 9050 |
. . . . . 6
|
| 46 | 1cnd 8088 |
. . . . . 6
| |
| 47 | 45, 46 | addcld 8092 |
. . . . 5
|
| 48 | simpr 110 |
. . . . . 6
| |
| 49 | 48 | nncnd 9050 |
. . . . 5
|
| 50 | 2cnd 9109 |
. . . . 5
| |
| 51 | 2ap0 9129 |
. . . . . 6
| |
| 52 | 51 | a1i 9 |
. . . . 5
|
| 53 | 47, 49, 50, 52 | divmulap3d 8898 |
. . . 4
|
| 54 | 49, 50 | mulcld 8093 |
. . . . 5
|
| 55 | 45, 46, 54 | addlsub 8442 |
. . . 4
|
| 56 | 53, 55 | bitrd 188 |
. . 3
|
| 57 | eqcom 2207 |
. . 3
| |
| 58 | 56, 57 | bitr3di 195 |
. 2
|
| 59 | 2, 1, 14, 43, 58 | en3i 6862 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 ax-pre-mulext 8043 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-xor 1396 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-po 4343 df-iso 4344 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-en 6828 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-reap 8648 df-ap 8655 df-div 8746 df-inn 9037 df-2 9095 df-n0 9296 df-z 9373 df-dvds 12099 |
| This theorem is referenced by: xpnnen 12765 unennn 12768 |
| Copyright terms: Public domain | W3C validator |