ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oddennn Unicode version

Theorem oddennn 11697
Description: There are as many odd positive integers as there are positive integers. (Contributed by Jim Kingdon, 11-May-2022.)
Assertion
Ref Expression
oddennn  |-  { z  e.  NN  |  -.  2  ||  z }  ~~  NN

Proof of Theorem oddennn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnex 8584 . . 3  |-  NN  e.  _V
21rabex 4012 . 2  |-  { z  e.  NN  |  -.  2  ||  z }  e.  _V
3 elrabi 2790 . . . 4  |-  ( x  e.  { z  e.  NN  |  -.  2  ||  z }  ->  x  e.  NN )
43peano2nnd 8593 . . 3  |-  ( x  e.  { z  e.  NN  |  -.  2  ||  z }  ->  (
x  +  1 )  e.  NN )
5 breq2 3879 . . . . . . 7  |-  ( z  =  x  ->  (
2  ||  z  <->  2  ||  x ) )
65notbid 633 . . . . . 6  |-  ( z  =  x  ->  ( -.  2  ||  z  <->  -.  2  ||  x ) )
76elrab 2793 . . . . 5  |-  ( x  e.  { z  e.  NN  |  -.  2  ||  z }  <->  ( x  e.  NN  /\  -.  2  ||  x ) )
87simprbi 271 . . . 4  |-  ( x  e.  { z  e.  NN  |  -.  2  ||  z }  ->  -.  2  ||  x )
93nnzd 9024 . . . . 5  |-  ( x  e.  { z  e.  NN  |  -.  2  ||  z }  ->  x  e.  ZZ )
10 oddp1even 11368 . . . . 5  |-  ( x  e.  ZZ  ->  ( -.  2  ||  x  <->  2  ||  ( x  +  1
) ) )
119, 10syl 14 . . . 4  |-  ( x  e.  { z  e.  NN  |  -.  2  ||  z }  ->  ( -.  2  ||  x  <->  2  ||  ( x  +  1
) ) )
128, 11mpbid 146 . . 3  |-  ( x  e.  { z  e.  NN  |  -.  2  ||  z }  ->  2  ||  ( x  +  1 ) )
13 nnehalf 11396 . . 3  |-  ( ( ( x  +  1 )  e.  NN  /\  2  ||  ( x  + 
1 ) )  -> 
( ( x  + 
1 )  /  2
)  e.  NN )
144, 12, 13syl2anc 406 . 2  |-  ( x  e.  { z  e.  NN  |  -.  2  ||  z }  ->  (
( x  +  1 )  /  2 )  e.  NN )
15 nnz 8925 . . . . . 6  |-  ( y  e.  NN  ->  y  e.  ZZ )
16 2z 8934 . . . . . . 7  |-  2  e.  ZZ
1716a1i 9 . . . . . 6  |-  ( y  e.  NN  ->  2  e.  ZZ )
1815, 17zmulcld 9031 . . . . 5  |-  ( y  e.  NN  ->  (
y  x.  2 )  e.  ZZ )
19 peano2zm 8944 . . . . 5  |-  ( ( y  x.  2 )  e.  ZZ  ->  (
( y  x.  2 )  -  1 )  e.  ZZ )
2018, 19syl 14 . . . 4  |-  ( y  e.  NN  ->  (
( y  x.  2 )  -  1 )  e.  ZZ )
21 1e2m1 8697 . . . . 5  |-  1  =  ( 2  -  1 )
2217zred 9025 . . . . . 6  |-  ( y  e.  NN  ->  2  e.  RR )
23 nnre 8585 . . . . . . 7  |-  ( y  e.  NN  ->  y  e.  RR )
2423, 22remulcld 7668 . . . . . 6  |-  ( y  e.  NN  ->  (
y  x.  2 )  e.  RR )
25 1red 7653 . . . . . 6  |-  ( y  e.  NN  ->  1  e.  RR )
26 0le2 8668 . . . . . . . 8  |-  0  <_  2
2726a1i 9 . . . . . . 7  |-  ( y  e.  NN  ->  0  <_  2 )
28 nnge1 8601 . . . . . . 7  |-  ( y  e.  NN  ->  1  <_  y )
2922, 23, 27, 28lemulge12d 8554 . . . . . 6  |-  ( y  e.  NN  ->  2  <_  ( y  x.  2 ) )
3022, 24, 25, 29lesub1dd 8189 . . . . 5  |-  ( y  e.  NN  ->  (
2  -  1 )  <_  ( ( y  x.  2 )  - 
1 ) )
3121, 30syl5eqbr 3908 . . . 4  |-  ( y  e.  NN  ->  1  <_  ( ( y  x.  2 )  -  1 ) )
32 elnnz1 8929 . . . 4  |-  ( ( ( y  x.  2 )  -  1 )  e.  NN  <->  ( (
( y  x.  2 )  -  1 )  e.  ZZ  /\  1  <_  ( ( y  x.  2 )  -  1 ) ) )
3320, 31, 32sylanbrc 411 . . 3  |-  ( y  e.  NN  ->  (
( y  x.  2 )  -  1 )  e.  NN )
34 dvdsmul2 11311 . . . . 5  |-  ( ( y  e.  ZZ  /\  2  e.  ZZ )  ->  2  ||  ( y  x.  2 ) )
3515, 16, 34sylancl 407 . . . 4  |-  ( y  e.  NN  ->  2  ||  ( y  x.  2 ) )
36 oddm1even 11367 . . . . . 6  |-  ( ( y  x.  2 )  e.  ZZ  ->  ( -.  2  ||  ( y  x.  2 )  <->  2  ||  ( ( y  x.  2 )  -  1 ) ) )
3718, 36syl 14 . . . . 5  |-  ( y  e.  NN  ->  ( -.  2  ||  ( y  x.  2 )  <->  2  ||  ( ( y  x.  2 )  -  1 ) ) )
3837biimprd 157 . . . 4  |-  ( y  e.  NN  ->  (
2  ||  ( (
y  x.  2 )  -  1 )  ->  -.  2  ||  ( y  x.  2 ) ) )
3935, 38mt2d 595 . . 3  |-  ( y  e.  NN  ->  -.  2  ||  ( ( y  x.  2 )  - 
1 ) )
40 breq2 3879 . . . . 5  |-  ( z  =  ( ( y  x.  2 )  - 
1 )  ->  (
2  ||  z  <->  2  ||  ( ( y  x.  2 )  -  1 ) ) )
4140notbid 633 . . . 4  |-  ( z  =  ( ( y  x.  2 )  - 
1 )  ->  ( -.  2  ||  z  <->  -.  2  ||  ( ( y  x.  2 )  -  1 ) ) )
4241elrab 2793 . . 3  |-  ( ( ( y  x.  2 )  -  1 )  e.  { z  e.  NN  |  -.  2  ||  z }  <->  ( (
( y  x.  2 )  -  1 )  e.  NN  /\  -.  2  ||  ( ( y  x.  2 )  - 
1 ) ) )
4333, 39, 42sylanbrc 411 . 2  |-  ( y  e.  NN  ->  (
( y  x.  2 )  -  1 )  e.  { z  e.  NN  |  -.  2  ||  z } )
44 eqcom 2102 . . 3  |-  ( ( ( x  +  1 )  /  2 )  =  y  <->  y  =  ( ( x  + 
1 )  /  2
) )
453adantr 272 . . . . . . 7  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z }  /\  y  e.  NN )  ->  x  e.  NN )
4645nncnd 8592 . . . . . 6  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z }  /\  y  e.  NN )  ->  x  e.  CC )
47 1cnd 7654 . . . . . 6  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z }  /\  y  e.  NN )  ->  1  e.  CC )
4846, 47addcld 7657 . . . . 5  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z }  /\  y  e.  NN )  ->  ( x  +  1 )  e.  CC )
49 simpr 109 . . . . . 6  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z }  /\  y  e.  NN )  ->  y  e.  NN )
5049nncnd 8592 . . . . 5  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z }  /\  y  e.  NN )  ->  y  e.  CC )
51 2cnd 8651 . . . . 5  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z }  /\  y  e.  NN )  ->  2  e.  CC )
52 2ap0 8671 . . . . . 6  |-  2 #  0
5352a1i 9 . . . . 5  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z }  /\  y  e.  NN )  ->  2 #  0 )
5448, 50, 51, 53divmulap3d 8446 . . . 4  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z }  /\  y  e.  NN )  ->  ( ( ( x  +  1 )  / 
2 )  =  y  <-> 
( x  +  1 )  =  ( y  x.  2 ) ) )
5550, 51mulcld 7658 . . . . 5  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z }  /\  y  e.  NN )  ->  ( y  x.  2 )  e.  CC )
5646, 47, 55addlsub 7999 . . . 4  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z }  /\  y  e.  NN )  ->  ( ( x  + 
1 )  =  ( y  x.  2 )  <-> 
x  =  ( ( y  x.  2 )  -  1 ) ) )
5754, 56bitrd 187 . . 3  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z }  /\  y  e.  NN )  ->  ( ( ( x  +  1 )  / 
2 )  =  y  <-> 
x  =  ( ( y  x.  2 )  -  1 ) ) )
5844, 57syl5rbbr 194 . 2  |-  ( ( x  e.  { z  e.  NN  |  -.  2  ||  z }  /\  y  e.  NN )  ->  ( x  =  ( ( y  x.  2 )  -  1 )  <-> 
y  =  ( ( x  +  1 )  /  2 ) ) )
592, 1, 14, 43, 58en3i 6595 1  |-  { z  e.  NN  |  -.  2  ||  z }  ~~  NN
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    <-> wb 104    = wceq 1299    e. wcel 1448   {crab 2379   class class class wbr 3875  (class class class)co 5706    ~~ cen 6562   0cc0 7500   1c1 7501    + caddc 7503    x. cmul 7505    <_ cle 7673    - cmin 7804   # cap 8209    / cdiv 8293   NNcn 8578   2c2 8629   ZZcz 8906    || cdvds 11288
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-mulrcl 7594  ax-addcom 7595  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-1rid 7602  ax-0id 7603  ax-rnegex 7604  ax-precex 7605  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611  ax-pre-mulgt0 7612  ax-pre-mulext 7613
This theorem depends on definitions:  df-bi 116  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-xor 1322  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rmo 2383  df-rab 2384  df-v 2643  df-sbc 2863  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-po 4156  df-iso 4157  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-en 6565  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-reap 8203  df-ap 8210  df-div 8294  df-inn 8579  df-2 8637  df-n0 8830  df-z 8907  df-dvds 11289
This theorem is referenced by:  xpnnen  11699  unennn  11702
  Copyright terms: Public domain W3C validator