| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oddennn | Unicode version | ||
| Description: There are as many odd positive integers as there are positive integers. (Contributed by Jim Kingdon, 11-May-2022.) |
| Ref | Expression |
|---|---|
| oddennn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnex 9013 |
. . 3
| |
| 2 | 1 | rabex 4178 |
. 2
|
| 3 | elrabi 2917 |
. . . 4
| |
| 4 | 3 | peano2nnd 9022 |
. . 3
|
| 5 | breq2 4038 |
. . . . . . 7
| |
| 6 | 5 | notbid 668 |
. . . . . 6
|
| 7 | 6 | elrab 2920 |
. . . . 5
|
| 8 | 7 | simprbi 275 |
. . . 4
|
| 9 | 3 | nnzd 9464 |
. . . . 5
|
| 10 | oddp1even 12058 |
. . . . 5
| |
| 11 | 9, 10 | syl 14 |
. . . 4
|
| 12 | 8, 11 | mpbid 147 |
. . 3
|
| 13 | nnehalf 12086 |
. . 3
| |
| 14 | 4, 12, 13 | syl2anc 411 |
. 2
|
| 15 | nnz 9362 |
. . . . . 6
| |
| 16 | 2z 9371 |
. . . . . . 7
| |
| 17 | 16 | a1i 9 |
. . . . . 6
|
| 18 | 15, 17 | zmulcld 9471 |
. . . . 5
|
| 19 | peano2zm 9381 |
. . . . 5
| |
| 20 | 18, 19 | syl 14 |
. . . 4
|
| 21 | 1e2m1 9126 |
. . . . 5
| |
| 22 | 17 | zred 9465 |
. . . . . 6
|
| 23 | nnre 9014 |
. . . . . . 7
| |
| 24 | 23, 22 | remulcld 8074 |
. . . . . 6
|
| 25 | 1red 8058 |
. . . . . 6
| |
| 26 | 0le2 9097 |
. . . . . . . 8
| |
| 27 | 26 | a1i 9 |
. . . . . . 7
|
| 28 | nnge1 9030 |
. . . . . . 7
| |
| 29 | 22, 23, 27, 28 | lemulge12d 8982 |
. . . . . 6
|
| 30 | 22, 24, 25, 29 | lesub1dd 8605 |
. . . . 5
|
| 31 | 21, 30 | eqbrtrid 4069 |
. . . 4
|
| 32 | elnnz1 9366 |
. . . 4
| |
| 33 | 20, 31, 32 | sylanbrc 417 |
. . 3
|
| 34 | dvdsmul2 11996 |
. . . . 5
| |
| 35 | 15, 16, 34 | sylancl 413 |
. . . 4
|
| 36 | oddm1even 12057 |
. . . . . 6
| |
| 37 | 18, 36 | syl 14 |
. . . . 5
|
| 38 | 37 | biimprd 158 |
. . . 4
|
| 39 | 35, 38 | mt2d 626 |
. . 3
|
| 40 | breq2 4038 |
. . . . 5
| |
| 41 | 40 | notbid 668 |
. . . 4
|
| 42 | 41 | elrab 2920 |
. . 3
|
| 43 | 33, 39, 42 | sylanbrc 417 |
. 2
|
| 44 | 3 | adantr 276 |
. . . . . . 7
|
| 45 | 44 | nncnd 9021 |
. . . . . 6
|
| 46 | 1cnd 8059 |
. . . . . 6
| |
| 47 | 45, 46 | addcld 8063 |
. . . . 5
|
| 48 | simpr 110 |
. . . . . 6
| |
| 49 | 48 | nncnd 9021 |
. . . . 5
|
| 50 | 2cnd 9080 |
. . . . 5
| |
| 51 | 2ap0 9100 |
. . . . . 6
| |
| 52 | 51 | a1i 9 |
. . . . 5
|
| 53 | 47, 49, 50, 52 | divmulap3d 8869 |
. . . 4
|
| 54 | 49, 50 | mulcld 8064 |
. . . . 5
|
| 55 | 45, 46, 54 | addlsub 8413 |
. . . 4
|
| 56 | 53, 55 | bitrd 188 |
. . 3
|
| 57 | eqcom 2198 |
. . 3
| |
| 58 | 56, 57 | bitr3di 195 |
. 2
|
| 59 | 2, 1, 14, 43, 58 | en3i 6839 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-xor 1387 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-en 6809 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-n0 9267 df-z 9344 df-dvds 11970 |
| This theorem is referenced by: xpnnen 12636 unennn 12639 |
| Copyright terms: Public domain | W3C validator |