ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cjap0 Unicode version

Theorem cjap0 10703
Description: A number is apart from zero iff its complex conjugate is apart from zero. (Contributed by Jim Kingdon, 14-Jun-2020.)
Assertion
Ref Expression
cjap0  |-  ( A  e.  CC  ->  ( A #  0  <->  ( * `  A ) #  0 ) )

Proof of Theorem cjap0
StepHypRef Expression
1 0cn 7777 . . 3  |-  0  e.  CC
2 cjap 10702 . . 3  |-  ( ( A  e.  CC  /\  0  e.  CC )  ->  ( ( * `  A ) #  ( * `  0 )  <->  A #  0
) )
31, 2mpan2 421 . 2  |-  ( A  e.  CC  ->  (
( * `  A
) #  ( * ` 
0 )  <->  A #  0
) )
4 cj0 10697 . . 3  |-  ( * `
 0 )  =  0
54breq2i 3940 . 2  |-  ( ( * `  A ) #  ( * `  0
)  <->  ( * `  A ) #  0 )
63, 5bitr3di 194 1  |-  ( A  e.  CC  ->  ( A #  0  <->  ( * `  A ) #  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    e. wcel 1480   class class class wbr 3932   ` cfv 5126   CCcc 7637   0cc0 7639   # cap 8362   *ccj 10635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4049  ax-pow 4101  ax-pr 4134  ax-un 4358  ax-setind 4455  ax-cnex 7730  ax-resscn 7731  ax-1cn 7732  ax-1re 7733  ax-icn 7734  ax-addcl 7735  ax-addrcl 7736  ax-mulcl 7737  ax-mulrcl 7738  ax-addcom 7739  ax-mulcom 7740  ax-addass 7741  ax-mulass 7742  ax-distr 7743  ax-i2m1 7744  ax-0lt1 7745  ax-1rid 7746  ax-0id 7747  ax-rnegex 7748  ax-precex 7749  ax-cnre 7750  ax-pre-ltirr 7751  ax-pre-ltwlin 7752  ax-pre-lttrn 7753  ax-pre-apti 7754  ax-pre-ltadd 7755  ax-pre-mulgt0 7756  ax-pre-mulext 7757
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3740  df-br 3933  df-opab 3993  df-mpt 3994  df-id 4218  df-po 4221  df-iso 4222  df-xp 4548  df-rel 4549  df-cnv 4550  df-co 4551  df-dm 4552  df-rn 4553  df-res 4554  df-ima 4555  df-iota 5091  df-fun 5128  df-fn 5129  df-f 5130  df-fv 5134  df-riota 5733  df-ov 5780  df-oprab 5781  df-mpo 5782  df-pnf 7821  df-mnf 7822  df-xr 7823  df-ltxr 7824  df-le 7825  df-sub 7954  df-neg 7955  df-reap 8356  df-ap 8363  df-div 8452  df-2 8798  df-cj 10638  df-re 10639  df-im 10640
This theorem is referenced by:  cjdivap  10705  cjap0d  10744  recvalap  10893
  Copyright terms: Public domain W3C validator