ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modq0 Unicode version

Theorem modq0 10264
Description:  A  mod  B is zero iff  A is evenly divisible by 
B. (Contributed by Jim Kingdon, 17-Oct-2021.)
Assertion
Ref Expression
modq0  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  ->  (
( A  mod  B
)  =  0  <->  ( A  /  B )  e.  ZZ ) )

Proof of Theorem modq0
StepHypRef Expression
1 modqval 10259 . . . . 5  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  ->  ( A  mod  B )  =  ( A  -  ( B  x.  ( |_ `  ( A  /  B
) ) ) ) )
21eqeq1d 2174 . . . 4  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  ->  (
( A  mod  B
)  =  0  <->  ( A  -  ( B  x.  ( |_ `  ( A  /  B ) ) ) )  =  0 ) )
3 qcn 9572 . . . . . 6  |-  ( A  e.  QQ  ->  A  e.  CC )
433ad2ant1 1008 . . . . 5  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  ->  A  e.  CC )
5 qcn 9572 . . . . . . 7  |-  ( B  e.  QQ  ->  B  e.  CC )
653ad2ant2 1009 . . . . . 6  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  ->  B  e.  CC )
7 simp3 989 . . . . . . . . . 10  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  ->  0  <  B )
87gt0ne0d 8410 . . . . . . . . 9  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  ->  B  =/=  0 )
9 qdivcl 9581 . . . . . . . . 9  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  B  =/=  0 )  ->  ( A  /  B )  e.  QQ )
108, 9syld3an3 1273 . . . . . . . 8  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  ->  ( A  /  B )  e.  QQ )
1110flqcld 10212 . . . . . . 7  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  ->  ( |_ `  ( A  /  B ) )  e.  ZZ )
1211zcnd 9314 . . . . . 6  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  ->  ( |_ `  ( A  /  B ) )  e.  CC )
136, 12mulcld 7919 . . . . 5  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  ->  ( B  x.  ( |_ `  ( A  /  B
) ) )  e.  CC )
144, 13subeq0ad 8219 . . . 4  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  ->  (
( A  -  ( B  x.  ( |_ `  ( A  /  B
) ) ) )  =  0  <->  A  =  ( B  x.  ( |_ `  ( A  /  B ) ) ) ) )
152, 14bitrd 187 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  ->  (
( A  mod  B
)  =  0  <->  A  =  ( B  x.  ( |_ `  ( A  /  B ) ) ) ) )
16 qre 9563 . . . . . . 7  |-  ( B  e.  QQ  ->  B  e.  RR )
17163ad2ant2 1009 . . . . . 6  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  ->  B  e.  RR )
1817, 7gt0ap0d 8527 . . . . 5  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  ->  B #  0 )
194, 12, 6, 18divmulap2d 8720 . . . 4  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  ->  (
( A  /  B
)  =  ( |_
`  ( A  /  B ) )  <->  A  =  ( B  x.  ( |_ `  ( A  /  B ) ) ) ) )
20 eqcom 2167 . . . 4  |-  ( ( A  /  B )  =  ( |_ `  ( A  /  B
) )  <->  ( |_ `  ( A  /  B
) )  =  ( A  /  B ) )
2119, 20bitr3di 194 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  ->  ( A  =  ( B  x.  ( |_ `  ( A  /  B ) ) )  <->  ( |_ `  ( A  /  B
) )  =  ( A  /  B ) ) )
2215, 21bitrd 187 . 2  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  ->  (
( A  mod  B
)  =  0  <->  ( |_ `  ( A  /  B ) )  =  ( A  /  B
) ) )
23 flqidz 10221 . . 3  |-  ( ( A  /  B )  e.  QQ  ->  (
( |_ `  ( A  /  B ) )  =  ( A  /  B )  <->  ( A  /  B )  e.  ZZ ) )
2410, 23syl 14 . 2  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  ->  (
( |_ `  ( A  /  B ) )  =  ( A  /  B )  <->  ( A  /  B )  e.  ZZ ) )
2522, 24bitrd 187 1  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  ->  (
( A  mod  B
)  =  0  <->  ( A  /  B )  e.  ZZ ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136    =/= wne 2336   class class class wbr 3982   ` cfv 5188  (class class class)co 5842   CCcc 7751   RRcr 7752   0cc0 7753    x. cmul 7758    < clt 7933    - cmin 8069    / cdiv 8568   ZZcz 9191   QQcq 9557   |_cfl 10203    mod cmo 10257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-n0 9115  df-z 9192  df-q 9558  df-rp 9590  df-fl 10205  df-mod 10258
This theorem is referenced by:  mulqmod0  10265  negqmod0  10266  modqid0  10285  q2txmodxeq0  10319  addmodlteq  10333  dvdsval3  11731
  Copyright terms: Public domain W3C validator