ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnreim Unicode version

Theorem cnreim 11489
Description: Complex apartness in terms of real and imaginary parts. See also apreim 8750 which is similar but with different notation. (Contributed by Jim Kingdon, 16-Dec-2023.)
Assertion
Ref Expression
cnreim  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A #  B  <->  ( (
Re `  A ) #  ( Re `  B )  \/  ( Im `  A ) #  ( Im `  B ) ) ) )

Proof of Theorem cnreim
StepHypRef Expression
1 replim 11370 . . 3  |-  ( A  e.  CC  ->  A  =  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )
2 replim 11370 . . 3  |-  ( B  e.  CC  ->  B  =  ( ( Re
`  B )  +  ( _i  x.  (
Im `  B )
) ) )
31, 2breqan12d 4099 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A #  B  <->  ( (
Re `  A )  +  ( _i  x.  ( Im `  A ) ) ) #  ( ( Re `  B )  +  ( _i  x.  ( Im `  B ) ) ) ) )
4 recl 11364 . . . 4  |-  ( A  e.  CC  ->  (
Re `  A )  e.  RR )
54adantr 276 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  A
)  e.  RR )
6 imcl 11365 . . . 4  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )
76adantr 276 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  A
)  e.  RR )
8 recl 11364 . . . 4  |-  ( B  e.  CC  ->  (
Re `  B )  e.  RR )
98adantl 277 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  B
)  e.  RR )
10 imcl 11365 . . . 4  |-  ( B  e.  CC  ->  (
Im `  B )  e.  RR )
1110adantl 277 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  B
)  e.  RR )
12 apreim 8750 . . 3  |-  ( ( ( ( Re `  A )  e.  RR  /\  ( Im `  A
)  e.  RR )  /\  ( ( Re
`  B )  e.  RR  /\  ( Im
`  B )  e.  RR ) )  -> 
( ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) #  ( ( Re `  B )  +  ( _i  x.  ( Im `  B ) ) )  <->  ( (
Re `  A ) #  ( Re `  B )  \/  ( Im `  A ) #  ( Im `  B ) ) ) )
135, 7, 9, 11, 12syl22anc 1272 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) #  ( ( Re `  B )  +  ( _i  x.  ( Im `  B ) ) )  <->  ( (
Re `  A ) #  ( Re `  B )  \/  ( Im `  A ) #  ( Im `  B ) ) ) )
143, 13bitrd 188 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A #  B  <->  ( (
Re `  A ) #  ( Re `  B )  \/  ( Im `  A ) #  ( Im `  B ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    e. wcel 2200   class class class wbr 4083   ` cfv 5318  (class class class)co 6001   CCcc 7997   RRcr 7998   _ici 8001    + caddc 8002    x. cmul 8004   # cap 8728   Recre 11351   Imcim 11352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-2 9169  df-cj 11353  df-re 11354  df-im 11355
This theorem is referenced by:  cndcap  16427
  Copyright terms: Public domain W3C validator