ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enqbreq2 Unicode version

Theorem enqbreq2 7441
Description: Equivalence relation for positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013.)
Assertion
Ref Expression
enqbreq2  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( A  ~Q  B  <->  ( ( 1st `  A )  .N  ( 2nd `  B
) )  =  ( ( 1st `  B
)  .N  ( 2nd `  A ) ) ) )

Proof of Theorem enqbreq2
StepHypRef Expression
1 1st2nd2 6242 . . 3  |-  ( A  e.  ( N.  X.  N. )  ->  A  = 
<. ( 1st `  A
) ,  ( 2nd `  A ) >. )
2 1st2nd2 6242 . . 3  |-  ( B  e.  ( N.  X.  N. )  ->  B  = 
<. ( 1st `  B
) ,  ( 2nd `  B ) >. )
31, 2breqan12d 4050 . 2  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( A  ~Q  B  <->  <. ( 1st `  A ) ,  ( 2nd `  A )
>.  ~Q  <. ( 1st `  B
) ,  ( 2nd `  B ) >. )
)
4 xp1st 6232 . . . 4  |-  ( A  e.  ( N.  X.  N. )  ->  ( 1st `  A )  e.  N. )
5 xp2nd 6233 . . . 4  |-  ( A  e.  ( N.  X.  N. )  ->  ( 2nd `  A )  e.  N. )
64, 5jca 306 . . 3  |-  ( A  e.  ( N.  X.  N. )  ->  ( ( 1st `  A )  e.  N.  /\  ( 2nd `  A )  e. 
N. ) )
7 xp1st 6232 . . . 4  |-  ( B  e.  ( N.  X.  N. )  ->  ( 1st `  B )  e.  N. )
8 xp2nd 6233 . . . 4  |-  ( B  e.  ( N.  X.  N. )  ->  ( 2nd `  B )  e.  N. )
97, 8jca 306 . . 3  |-  ( B  e.  ( N.  X.  N. )  ->  ( ( 1st `  B )  e.  N.  /\  ( 2nd `  B )  e. 
N. ) )
10 enqbreq 7440 . . 3  |-  ( ( ( ( 1st `  A
)  e.  N.  /\  ( 2nd `  A )  e.  N. )  /\  ( ( 1st `  B
)  e.  N.  /\  ( 2nd `  B )  e.  N. ) )  ->  ( <. ( 1st `  A ) ,  ( 2nd `  A
) >.  ~Q  <. ( 1st `  B ) ,  ( 2nd `  B )
>. 
<->  ( ( 1st `  A
)  .N  ( 2nd `  B ) )  =  ( ( 2nd `  A
)  .N  ( 1st `  B ) ) ) )
116, 9, 10syl2an 289 . 2  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( <. ( 1st `  A
) ,  ( 2nd `  A ) >.  ~Q  <. ( 1st `  B ) ,  ( 2nd `  B
) >. 
<->  ( ( 1st `  A
)  .N  ( 2nd `  B ) )  =  ( ( 2nd `  A
)  .N  ( 1st `  B ) ) ) )
12 mulcompig 7415 . . . 4  |-  ( ( ( 2nd `  A
)  e.  N.  /\  ( 1st `  B )  e.  N. )  -> 
( ( 2nd `  A
)  .N  ( 1st `  B ) )  =  ( ( 1st `  B
)  .N  ( 2nd `  A ) ) )
135, 7, 12syl2an 289 . . 3  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  (
( 2nd `  A
)  .N  ( 1st `  B ) )  =  ( ( 1st `  B
)  .N  ( 2nd `  A ) ) )
1413eqeq2d 2208 . 2  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  (
( ( 1st `  A
)  .N  ( 2nd `  B ) )  =  ( ( 2nd `  A
)  .N  ( 1st `  B ) )  <->  ( ( 1st `  A )  .N  ( 2nd `  B
) )  =  ( ( 1st `  B
)  .N  ( 2nd `  A ) ) ) )
153, 11, 143bitrd 214 1  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( A  ~Q  B  <->  ( ( 1st `  A )  .N  ( 2nd `  B
) )  =  ( ( 1st `  B
)  .N  ( 2nd `  A ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   <.cop 3626   class class class wbr 4034    X. cxp 4662   ` cfv 5259  (class class class)co 5925   1stc1st 6205   2ndc2nd 6206   N.cnpi 7356    .N cmi 7358    ~Q ceq 7363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-oadd 6487  df-omul 6488  df-ni 7388  df-mi 7390  df-enq 7431
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator