ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axpre-ltadd Unicode version

Theorem axpre-ltadd 7999
Description: Ordering property of addition on reals. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-ltadd 8041. (Contributed by NM, 11-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axpre-ltadd  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <RR  B  ->  ( C  +  A )  <RR  ( C  +  B
) ) )

Proof of Theorem axpre-ltadd
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 7941 . . 3  |-  ( A  e.  RR  <->  E. x  e.  R.  <. x ,  0R >.  =  A )
2 elreal 7941 . . 3  |-  ( B  e.  RR  <->  E. y  e.  R.  <. y ,  0R >.  =  B )
3 elreal 7941 . . 3  |-  ( C  e.  RR  <->  E. z  e.  R.  <. z ,  0R >.  =  C )
4 breq1 4047 . . . 4  |-  ( <.
x ,  0R >.  =  A  ->  ( <. x ,  0R >.  <RR  <. y ,  0R >.  <->  A  <RR  <. y ,  0R >. ) )
5 oveq2 5952 . . . . 5  |-  ( <.
x ,  0R >.  =  A  ->  ( <. z ,  0R >.  +  <. x ,  0R >. )  =  ( <. z ,  0R >.  +  A
) )
65breq1d 4054 . . . 4  |-  ( <.
x ,  0R >.  =  A  ->  ( ( <. z ,  0R >.  + 
<. x ,  0R >. ) 
<RR  ( <. z ,  0R >.  +  <. y ,  0R >. )  <->  ( <. z ,  0R >.  +  A
)  <RR  ( <. z ,  0R >.  +  <. y ,  0R >. ) ) )
74, 6bibi12d 235 . . 3  |-  ( <.
x ,  0R >.  =  A  ->  ( ( <. x ,  0R >.  <RR  <. y ,  0R >.  <->  ( <. z ,  0R >.  + 
<. x ,  0R >. ) 
<RR  ( <. z ,  0R >.  +  <. y ,  0R >. ) )  <->  ( A  <RR 
<. y ,  0R >.  <->  ( <. z ,  0R >.  +  A )  <RR  ( <.
z ,  0R >.  + 
<. y ,  0R >. ) ) ) )
8 breq2 4048 . . . 4  |-  ( <.
y ,  0R >.  =  B  ->  ( A  <RR 
<. y ,  0R >.  <->  A  <RR  B ) )
9 oveq2 5952 . . . . 5  |-  ( <.
y ,  0R >.  =  B  ->  ( <. z ,  0R >.  +  <. y ,  0R >. )  =  ( <. z ,  0R >.  +  B
) )
109breq2d 4056 . . . 4  |-  ( <.
y ,  0R >.  =  B  ->  ( ( <. z ,  0R >.  +  A )  <RR  ( <.
z ,  0R >.  + 
<. y ,  0R >. )  <-> 
( <. z ,  0R >.  +  A )  <RR  (
<. z ,  0R >.  +  B ) ) )
118, 10bibi12d 235 . . 3  |-  ( <.
y ,  0R >.  =  B  ->  ( ( A  <RR  <. y ,  0R >.  <-> 
( <. z ,  0R >.  +  A )  <RR  (
<. z ,  0R >.  + 
<. y ,  0R >. ) )  <->  ( A  <RR  B  <-> 
( <. z ,  0R >.  +  A )  <RR  (
<. z ,  0R >.  +  B ) ) ) )
12 oveq1 5951 . . . . 5  |-  ( <.
z ,  0R >.  =  C  ->  ( <. z ,  0R >.  +  A
)  =  ( C  +  A ) )
13 oveq1 5951 . . . . 5  |-  ( <.
z ,  0R >.  =  C  ->  ( <. z ,  0R >.  +  B
)  =  ( C  +  B ) )
1412, 13breq12d 4057 . . . 4  |-  ( <.
z ,  0R >.  =  C  ->  ( ( <. z ,  0R >.  +  A )  <RR  ( <.
z ,  0R >.  +  B )  <->  ( C  +  A )  <RR  ( C  +  B ) ) )
1514bibi2d 232 . . 3  |-  ( <.
z ,  0R >.  =  C  ->  ( ( A  <RR  B  <->  ( <. z ,  0R >.  +  A
)  <RR  ( <. z ,  0R >.  +  B
) )  <->  ( A  <RR  B  <->  ( C  +  A )  <RR  ( C  +  B ) ) ) )
16 ltasrg 7883 . . . 4  |-  ( ( x  e.  R.  /\  y  e.  R.  /\  z  e.  R. )  ->  (
x  <R  y  <->  ( z  +R  x )  <R  (
z  +R  y ) ) )
17 ltresr 7952 . . . . 5  |-  ( <.
x ,  0R >.  <RR  <. y ,  0R >.  <->  x  <R  y )
1817a1i 9 . . . 4  |-  ( ( x  e.  R.  /\  y  e.  R.  /\  z  e.  R. )  ->  ( <. x ,  0R >.  <RR  <. y ,  0R >.  <->  x  <R  y ) )
19 simp3 1002 . . . . . 6  |-  ( ( x  e.  R.  /\  y  e.  R.  /\  z  e.  R. )  ->  z  e.  R. )
20 simp1 1000 . . . . . 6  |-  ( ( x  e.  R.  /\  y  e.  R.  /\  z  e.  R. )  ->  x  e.  R. )
21 simp2 1001 . . . . . 6  |-  ( ( x  e.  R.  /\  y  e.  R.  /\  z  e.  R. )  ->  y  e.  R. )
22 addresr 7950 . . . . . . 7  |-  ( ( z  e.  R.  /\  x  e.  R. )  ->  ( <. z ,  0R >.  +  <. x ,  0R >. )  =  <. (
z  +R  x ) ,  0R >. )
23 addresr 7950 . . . . . . 7  |-  ( ( z  e.  R.  /\  y  e.  R. )  ->  ( <. z ,  0R >.  +  <. y ,  0R >. )  =  <. (
z  +R  y ) ,  0R >. )
2422, 23breqan12d 4060 . . . . . 6  |-  ( ( ( z  e.  R.  /\  x  e.  R. )  /\  ( z  e.  R.  /\  y  e.  R. )
)  ->  ( ( <. z ,  0R >.  + 
<. x ,  0R >. ) 
<RR  ( <. z ,  0R >.  +  <. y ,  0R >. )  <->  <. ( z  +R  x ) ,  0R >. 
<RR  <. ( z  +R  y ) ,  0R >. ) )
2519, 20, 19, 21, 24syl22anc 1251 . . . . 5  |-  ( ( x  e.  R.  /\  y  e.  R.  /\  z  e.  R. )  ->  (
( <. z ,  0R >.  +  <. x ,  0R >. )  <RR  ( <. z ,  0R >.  +  <. y ,  0R >. )  <->  <. ( z  +R  x ) ,  0R >.  <RR  <. (
z  +R  y ) ,  0R >. )
)
26 ltresr 7952 . . . . 5  |-  ( <.
( z  +R  x
) ,  0R >.  <RR  <. ( z  +R  y
) ,  0R >.  <->  (
z  +R  x ) 
<R  ( z  +R  y
) )
2725, 26bitrdi 196 . . . 4  |-  ( ( x  e.  R.  /\  y  e.  R.  /\  z  e.  R. )  ->  (
( <. z ,  0R >.  +  <. x ,  0R >. )  <RR  ( <. z ,  0R >.  +  <. y ,  0R >. )  <->  ( z  +R  x )  <R  (
z  +R  y ) ) )
2816, 18, 273bitr4d 220 . . 3  |-  ( ( x  e.  R.  /\  y  e.  R.  /\  z  e.  R. )  ->  ( <. x ,  0R >.  <RR  <. y ,  0R >.  <->  ( <. z ,  0R >.  + 
<. x ,  0R >. ) 
<RR  ( <. z ,  0R >.  +  <. y ,  0R >. ) ) )
291, 2, 3, 7, 11, 15, 283gencl 2806 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <RR  B  <->  ( C  +  A )  <RR  ( C  +  B ) ) )
3029biimpd 144 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <RR  B  ->  ( C  +  A )  <RR  ( C  +  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176   <.cop 3636   class class class wbr 4044  (class class class)co 5944   R.cnr 7410   0Rc0r 7411    +R cplr 7414    <R cltr 7416   RRcr 7924    + caddc 7928    <RR cltrr 7929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-eprel 4336  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-1o 6502  df-2o 6503  df-oadd 6506  df-omul 6507  df-er 6620  df-ec 6622  df-qs 6626  df-ni 7417  df-pli 7418  df-mi 7419  df-lti 7420  df-plpq 7457  df-mpq 7458  df-enq 7460  df-nqqs 7461  df-plqqs 7462  df-mqqs 7463  df-1nqqs 7464  df-rq 7465  df-ltnqqs 7466  df-enq0 7537  df-nq0 7538  df-0nq0 7539  df-plq0 7540  df-mq0 7541  df-inp 7579  df-i1p 7580  df-iplp 7581  df-iltp 7583  df-enr 7839  df-nr 7840  df-plr 7841  df-ltr 7843  df-0r 7844  df-c 7931  df-r 7935  df-add 7936  df-lt 7938
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator