| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > brres | GIF version | ||
| Description: Binary relation on a restriction. (Contributed by NM, 12-Dec-2006.) |
| Ref | Expression |
|---|---|
| opelres.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| brres | ⊢ (𝐴(𝐶 ↾ 𝐷)𝐵 ↔ (𝐴𝐶𝐵 ∧ 𝐴 ∈ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelres.1 | . . 3 ⊢ 𝐵 ∈ V | |
| 2 | 1 | opelres 4963 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 ↾ 𝐷) ↔ (〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷)) |
| 3 | df-br 4044 | . 2 ⊢ (𝐴(𝐶 ↾ 𝐷)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (𝐶 ↾ 𝐷)) | |
| 4 | df-br 4044 | . . 3 ⊢ (𝐴𝐶𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝐶) | |
| 5 | 4 | anbi1i 458 | . 2 ⊢ ((𝐴𝐶𝐵 ∧ 𝐴 ∈ 𝐷) ↔ (〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷)) |
| 6 | 2, 3, 5 | 3bitr4i 212 | 1 ⊢ (𝐴(𝐶 ↾ 𝐷)𝐵 ↔ (𝐴𝐶𝐵 ∧ 𝐴 ∈ 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∈ wcel 2175 Vcvv 2771 〈cop 3635 class class class wbr 4043 ↾ cres 4676 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-xp 4680 df-res 4686 |
| This theorem is referenced by: dfres2 5010 dfima2 5023 poirr2 5074 cores 5185 resco 5186 rnco 5188 fnres 5391 fvres 5599 nfunsn 5610 1stconst 6306 2ndconst 6307 |
| Copyright terms: Public domain | W3C validator |