![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > brres | GIF version |
Description: Binary relation on a restriction. (Contributed by NM, 12-Dec-2006.) |
Ref | Expression |
---|---|
opelres.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
brres | ⊢ (𝐴(𝐶 ↾ 𝐷)𝐵 ↔ (𝐴𝐶𝐵 ∧ 𝐴 ∈ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelres.1 | . . 3 ⊢ 𝐵 ∈ V | |
2 | 1 | opelres 4914 | . 2 ⊢ (⟨𝐴, 𝐵⟩ ∈ (𝐶 ↾ 𝐷) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝐶 ∧ 𝐴 ∈ 𝐷)) |
3 | df-br 4006 | . 2 ⊢ (𝐴(𝐶 ↾ 𝐷)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝐶 ↾ 𝐷)) | |
4 | df-br 4006 | . . 3 ⊢ (𝐴𝐶𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐶) | |
5 | 4 | anbi1i 458 | . 2 ⊢ ((𝐴𝐶𝐵 ∧ 𝐴 ∈ 𝐷) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝐶 ∧ 𝐴 ∈ 𝐷)) |
6 | 2, 3, 5 | 3bitr4i 212 | 1 ⊢ (𝐴(𝐶 ↾ 𝐷)𝐵 ↔ (𝐴𝐶𝐵 ∧ 𝐴 ∈ 𝐷)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∈ wcel 2148 Vcvv 2739 ⟨cop 3597 class class class wbr 4005 ↾ cres 4630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-opab 4067 df-xp 4634 df-res 4640 |
This theorem is referenced by: dfres2 4961 dfima2 4974 poirr2 5023 cores 5134 resco 5135 rnco 5137 fnres 5334 fvres 5541 nfunsn 5551 1stconst 6224 2ndconst 6225 |
Copyright terms: Public domain | W3C validator |