| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > brres | GIF version | ||
| Description: Binary relation on a restriction. (Contributed by NM, 12-Dec-2006.) |
| Ref | Expression |
|---|---|
| opelres.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| brres | ⊢ (𝐴(𝐶 ↾ 𝐷)𝐵 ↔ (𝐴𝐶𝐵 ∧ 𝐴 ∈ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelres.1 | . . 3 ⊢ 𝐵 ∈ V | |
| 2 | 1 | opelres 5009 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 ↾ 𝐷) ↔ (〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷)) |
| 3 | df-br 4083 | . 2 ⊢ (𝐴(𝐶 ↾ 𝐷)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (𝐶 ↾ 𝐷)) | |
| 4 | df-br 4083 | . . 3 ⊢ (𝐴𝐶𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝐶) | |
| 5 | 4 | anbi1i 458 | . 2 ⊢ ((𝐴𝐶𝐵 ∧ 𝐴 ∈ 𝐷) ↔ (〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷)) |
| 6 | 2, 3, 5 | 3bitr4i 212 | 1 ⊢ (𝐴(𝐶 ↾ 𝐷)𝐵 ↔ (𝐴𝐶𝐵 ∧ 𝐴 ∈ 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∈ wcel 2200 Vcvv 2799 〈cop 3669 class class class wbr 4082 ↾ cres 4720 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-xp 4724 df-res 4730 |
| This theorem is referenced by: dfres2 5056 dfima2 5069 poirr2 5120 cores 5231 resco 5232 rnco 5234 fnres 5439 fvres 5650 nfunsn 5663 1stconst 6365 2ndconst 6366 |
| Copyright terms: Public domain | W3C validator |