Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > brres | GIF version |
Description: Binary relation on a restriction. (Contributed by NM, 12-Dec-2006.) |
Ref | Expression |
---|---|
opelres.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
brres | ⊢ (𝐴(𝐶 ↾ 𝐷)𝐵 ↔ (𝐴𝐶𝐵 ∧ 𝐴 ∈ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelres.1 | . . 3 ⊢ 𝐵 ∈ V | |
2 | 1 | opelres 4896 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 ↾ 𝐷) ↔ (〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷)) |
3 | df-br 3990 | . 2 ⊢ (𝐴(𝐶 ↾ 𝐷)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (𝐶 ↾ 𝐷)) | |
4 | df-br 3990 | . . 3 ⊢ (𝐴𝐶𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝐶) | |
5 | 4 | anbi1i 455 | . 2 ⊢ ((𝐴𝐶𝐵 ∧ 𝐴 ∈ 𝐷) ↔ (〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷)) |
6 | 2, 3, 5 | 3bitr4i 211 | 1 ⊢ (𝐴(𝐶 ↾ 𝐷)𝐵 ↔ (𝐴𝐶𝐵 ∧ 𝐴 ∈ 𝐷)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∈ wcel 2141 Vcvv 2730 〈cop 3586 class class class wbr 3989 ↾ cres 4613 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-res 4623 |
This theorem is referenced by: dfres2 4943 dfima2 4955 poirr2 5003 cores 5114 resco 5115 rnco 5117 fnres 5314 fvres 5520 nfunsn 5530 1stconst 6200 2ndconst 6201 |
Copyright terms: Public domain | W3C validator |