![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > brres | GIF version |
Description: Binary relation on a restriction. (Contributed by NM, 12-Dec-2006.) |
Ref | Expression |
---|---|
opelres.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
brres | ⊢ (𝐴(𝐶 ↾ 𝐷)𝐵 ↔ (𝐴𝐶𝐵 ∧ 𝐴 ∈ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelres.1 | . . 3 ⊢ 𝐵 ∈ V | |
2 | 1 | opelres 4948 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 ↾ 𝐷) ↔ (〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷)) |
3 | df-br 4031 | . 2 ⊢ (𝐴(𝐶 ↾ 𝐷)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (𝐶 ↾ 𝐷)) | |
4 | df-br 4031 | . . 3 ⊢ (𝐴𝐶𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝐶) | |
5 | 4 | anbi1i 458 | . 2 ⊢ ((𝐴𝐶𝐵 ∧ 𝐴 ∈ 𝐷) ↔ (〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷)) |
6 | 2, 3, 5 | 3bitr4i 212 | 1 ⊢ (𝐴(𝐶 ↾ 𝐷)𝐵 ↔ (𝐴𝐶𝐵 ∧ 𝐴 ∈ 𝐷)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∈ wcel 2164 Vcvv 2760 〈cop 3622 class class class wbr 4030 ↾ cres 4662 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-xp 4666 df-res 4672 |
This theorem is referenced by: dfres2 4995 dfima2 5008 poirr2 5059 cores 5170 resco 5171 rnco 5173 fnres 5371 fvres 5579 nfunsn 5590 1stconst 6276 2ndconst 6277 |
Copyright terms: Public domain | W3C validator |