ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brxp GIF version

Theorem brxp 4659
Description: Binary relation on a cross product. (Contributed by NM, 22-Apr-2004.)
Assertion
Ref Expression
brxp (𝐴(𝐶 × 𝐷)𝐵 ↔ (𝐴𝐶𝐵𝐷))

Proof of Theorem brxp
StepHypRef Expression
1 df-br 4006 . 2 (𝐴(𝐶 × 𝐷)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷))
2 opelxp 4658 . 2 (⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) ↔ (𝐴𝐶𝐵𝐷))
31, 2bitri 184 1 (𝐴(𝐶 × 𝐷)𝐵 ↔ (𝐴𝐶𝐵𝐷))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wcel 2148  cop 3597   class class class wbr 4005   × cxp 4626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634
This theorem is referenced by:  brrelex12  4666  brel  4680  brinxp2  4695  eqbrrdva  4799  xpidtr  5021  xpcom  5177  tpostpos  6267  swoer  6565  erinxp  6611  ecopover  6635  ecopoverg  6638  ltxrlt  8025  ltxr  9777
  Copyright terms: Public domain W3C validator