| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > c0ex | GIF version | ||
| Description: 0 is a set (common case). (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| c0ex | ⊢ 0 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 8037 | . 2 ⊢ 0 ∈ ℂ | |
| 2 | 1 | elexi 2775 | 1 ⊢ 0 ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 Vcvv 2763 ℂcc 7896 0cc0 7898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 ax-1cn 7991 ax-icn 7993 ax-addcl 7994 ax-mulcl 7996 ax-i2m1 8003 |
| This theorem depends on definitions: df-bi 117 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 |
| This theorem is referenced by: elnn0 9270 nn0ex 9274 un0mulcl 9302 nn0ssz 9363 nn0ind-raph 9462 ser0f 10645 fser0const 10646 facnn 10838 fac0 10839 prhash2ex 10920 wrdexb 10966 iserge0 11527 sum0 11572 isumz 11573 fisumss 11576 0bits 12143 bezoutlemmain 12192 lcmval 12258 dvef 15071 plyval 15076 elply2 15079 plyss 15082 elplyd 15085 ply1term 15087 plymullem 15094 plyco 15103 plycj 15105 2o01f 15749 iswomni0 15808 |
| Copyright terms: Public domain | W3C validator |