| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > c0ex | GIF version | ||
| Description: 0 is a set (common case). (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| c0ex | ⊢ 0 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 8146 | . 2 ⊢ 0 ∈ ℂ | |
| 2 | 1 | elexi 2812 | 1 ⊢ 0 ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 Vcvv 2799 ℂcc 8005 0cc0 8007 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-ext 2211 ax-1cn 8100 ax-icn 8102 ax-addcl 8103 ax-mulcl 8105 ax-i2m1 8112 |
| This theorem depends on definitions: df-bi 117 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-v 2801 |
| This theorem is referenced by: elnn0 9379 nn0ex 9383 un0mulcl 9411 nn0ssz 9472 nn0ind-raph 9572 ser0f 10764 fser0const 10765 facnn 10957 fac0 10958 prhash2ex 11039 wrdexb 11091 s1rn 11159 eqs1 11169 iserge0 11862 sum0 11907 isumz 11908 fisumss 11911 0bits 12478 bezoutlemmain 12527 lcmval 12593 dvef 15409 plyval 15414 elply2 15417 plyss 15420 elplyd 15423 ply1term 15425 plymullem 15432 plyco 15441 plycj 15443 wlkl1loop 16079 2wlklem 16095 2o01f 16387 iswomni0 16449 |
| Copyright terms: Public domain | W3C validator |