| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > c0ex | GIF version | ||
| Description: 0 is a set (common case). (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| c0ex | ⊢ 0 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 8106 | . 2 ⊢ 0 ∈ ℂ | |
| 2 | 1 | elexi 2792 | 1 ⊢ 0 ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2180 Vcvv 2779 ℂcc 7965 0cc0 7967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1473 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-ext 2191 ax-1cn 8060 ax-icn 8062 ax-addcl 8063 ax-mulcl 8065 ax-i2m1 8072 |
| This theorem depends on definitions: df-bi 117 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-v 2781 |
| This theorem is referenced by: elnn0 9339 nn0ex 9343 un0mulcl 9371 nn0ssz 9432 nn0ind-raph 9532 ser0f 10723 fser0const 10724 facnn 10916 fac0 10917 prhash2ex 10998 wrdexb 11050 s1rn 11117 eqs1 11127 iserge0 11820 sum0 11865 isumz 11866 fisumss 11869 0bits 12436 bezoutlemmain 12485 lcmval 12551 dvef 15366 plyval 15371 elply2 15374 plyss 15377 elplyd 15380 ply1term 15382 plymullem 15389 plyco 15398 plycj 15400 2o01f 16269 iswomni0 16330 |
| Copyright terms: Public domain | W3C validator |