ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  c0ex GIF version

Theorem c0ex 7914
Description: 0 is a set (common case). (Contributed by David A. Wheeler, 7-Jul-2016.)
Assertion
Ref Expression
c0ex 0 ∈ V

Proof of Theorem c0ex
StepHypRef Expression
1 0cn 7912 . 2 0 ∈ ℂ
21elexi 2742 1 0 ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2141  Vcvv 2730  cc 7772  0cc0 7774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-ext 2152  ax-1cn 7867  ax-icn 7869  ax-addcl 7870  ax-mulcl 7872  ax-i2m1 7879
This theorem depends on definitions:  df-bi 116  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-v 2732
This theorem is referenced by:  elnn0  9137  nn0ex  9141  un0mulcl  9169  nn0ssz  9230  nn0ind-raph  9329  ser0f  10471  fser0const  10472  facnn  10661  fac0  10662  prhash2ex  10744  iserge0  11306  sum0  11351  isumz  11352  fisumss  11355  bezoutlemmain  11953  lcmval  12017  dvef  13482  2o01f  14029  iswomni0  14083
  Copyright terms: Public domain W3C validator