| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > c0ex | GIF version | ||
| Description: 0 is a set (common case). (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| c0ex | ⊢ 0 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 8020 | . 2 ⊢ 0 ∈ ℂ | |
| 2 | 1 | elexi 2775 | 1 ⊢ 0 ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 Vcvv 2763 ℂcc 7879 0cc0 7881 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 ax-1cn 7974 ax-icn 7976 ax-addcl 7977 ax-mulcl 7979 ax-i2m1 7986 |
| This theorem depends on definitions: df-bi 117 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 |
| This theorem is referenced by: elnn0 9253 nn0ex 9257 un0mulcl 9285 nn0ssz 9346 nn0ind-raph 9445 ser0f 10628 fser0const 10629 facnn 10821 fac0 10822 prhash2ex 10903 wrdexb 10949 iserge0 11510 sum0 11555 isumz 11556 fisumss 11559 0bits 12126 bezoutlemmain 12175 lcmval 12241 dvef 14973 plyval 14978 elply2 14981 plyss 14984 elplyd 14987 ply1term 14989 plymullem 14996 plyco 15005 plycj 15007 2o01f 15651 iswomni0 15705 |
| Copyright terms: Public domain | W3C validator |