| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > c0ex | GIF version | ||
| Description: 0 is a set (common case). (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| c0ex | ⊢ 0 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 8071 | . 2 ⊢ 0 ∈ ℂ | |
| 2 | 1 | elexi 2785 | 1 ⊢ 0 ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 Vcvv 2773 ℂcc 7930 0cc0 7932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-ext 2188 ax-1cn 8025 ax-icn 8027 ax-addcl 8028 ax-mulcl 8030 ax-i2m1 8037 |
| This theorem depends on definitions: df-bi 117 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-v 2775 |
| This theorem is referenced by: elnn0 9304 nn0ex 9308 un0mulcl 9336 nn0ssz 9397 nn0ind-raph 9497 ser0f 10686 fser0const 10687 facnn 10879 fac0 10880 prhash2ex 10961 wrdexb 11013 s1rn 11080 eqs1 11090 iserge0 11698 sum0 11743 isumz 11744 fisumss 11747 0bits 12314 bezoutlemmain 12363 lcmval 12429 dvef 15243 plyval 15248 elply2 15251 plyss 15254 elplyd 15257 ply1term 15259 plymullem 15266 plyco 15275 plycj 15277 2o01f 16005 iswomni0 16064 |
| Copyright terms: Public domain | W3C validator |