ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  c0ex GIF version

Theorem c0ex 7893
Description: 0 is a set (common case). (Contributed by David A. Wheeler, 7-Jul-2016.)
Assertion
Ref Expression
c0ex 0 ∈ V

Proof of Theorem c0ex
StepHypRef Expression
1 0cn 7891 . 2 0 ∈ ℂ
21elexi 2738 1 0 ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2136  Vcvv 2726  cc 7751  0cc0 7753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-ext 2147  ax-1cn 7846  ax-icn 7848  ax-addcl 7849  ax-mulcl 7851  ax-i2m1 7858
This theorem depends on definitions:  df-bi 116  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-v 2728
This theorem is referenced by:  elnn0  9116  nn0ex  9120  un0mulcl  9148  nn0ssz  9209  nn0ind-raph  9308  ser0f  10450  fser0const  10451  facnn  10640  fac0  10641  prhash2ex  10722  iserge0  11284  sum0  11329  isumz  11330  fisumss  11333  bezoutlemmain  11931  lcmval  11995  dvef  13328  2o01f  13876  iswomni0  13930
  Copyright terms: Public domain W3C validator