ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  c0ex GIF version

Theorem c0ex 8148
Description: 0 is a set (common case). (Contributed by David A. Wheeler, 7-Jul-2016.)
Assertion
Ref Expression
c0ex 0 ∈ V

Proof of Theorem c0ex
StepHypRef Expression
1 0cn 8146 . 2 0 ∈ ℂ
21elexi 2812 1 0 ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2200  Vcvv 2799  cc 8005  0cc0 8007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-ext 2211  ax-1cn 8100  ax-icn 8102  ax-addcl 8103  ax-mulcl 8105  ax-i2m1 8112
This theorem depends on definitions:  df-bi 117  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-v 2801
This theorem is referenced by:  elnn0  9379  nn0ex  9383  un0mulcl  9411  nn0ssz  9472  nn0ind-raph  9572  ser0f  10764  fser0const  10765  facnn  10957  fac0  10958  prhash2ex  11039  wrdexb  11091  s1rn  11159  eqs1  11169  iserge0  11862  sum0  11907  isumz  11908  fisumss  11911  0bits  12478  bezoutlemmain  12527  lcmval  12593  dvef  15409  plyval  15414  elply2  15417  plyss  15420  elplyd  15423  ply1term  15425  plymullem  15432  plyco  15441  plycj  15443  wlkl1loop  16079  2wlklem  16095  2o01f  16387  iswomni0  16449
  Copyright terms: Public domain W3C validator