ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  c0ex GIF version

Theorem c0ex 7981
Description: 0 is a set (common case). (Contributed by David A. Wheeler, 7-Jul-2016.)
Assertion
Ref Expression
c0ex 0 ∈ V

Proof of Theorem c0ex
StepHypRef Expression
1 0cn 7979 . 2 0 ∈ ℂ
21elexi 2764 1 0 ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2160  Vcvv 2752  cc 7839  0cc0 7841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-ext 2171  ax-1cn 7934  ax-icn 7936  ax-addcl 7937  ax-mulcl 7939  ax-i2m1 7946
This theorem depends on definitions:  df-bi 117  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-v 2754
This theorem is referenced by:  elnn0  9208  nn0ex  9212  un0mulcl  9240  nn0ssz  9301  nn0ind-raph  9400  ser0f  10546  fser0const  10547  facnn  10739  fac0  10740  prhash2ex  10821  iserge0  11383  sum0  11428  isumz  11429  fisumss  11432  bezoutlemmain  12031  lcmval  12095  dvef  14645  2o01f  15205  iswomni0  15258
  Copyright terms: Public domain W3C validator