ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  c0ex GIF version

Theorem c0ex 7951
Description: 0 is a set (common case). (Contributed by David A. Wheeler, 7-Jul-2016.)
Assertion
Ref Expression
c0ex 0 ∈ V

Proof of Theorem c0ex
StepHypRef Expression
1 0cn 7949 . 2 0 ∈ ℂ
21elexi 2750 1 0 ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2148  Vcvv 2738  cc 7809  0cc0 7811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-ext 2159  ax-1cn 7904  ax-icn 7906  ax-addcl 7907  ax-mulcl 7909  ax-i2m1 7916
This theorem depends on definitions:  df-bi 117  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-v 2740
This theorem is referenced by:  elnn0  9178  nn0ex  9182  un0mulcl  9210  nn0ssz  9271  nn0ind-raph  9370  ser0f  10515  fser0const  10516  facnn  10707  fac0  10708  prhash2ex  10789  iserge0  11351  sum0  11396  isumz  11397  fisumss  11400  bezoutlemmain  11999  lcmval  12063  dvef  14191  2o01f  14749  iswomni0  14802
  Copyright terms: Public domain W3C validator