ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iserge0 Unicode version

Theorem iserge0 11354
Description: The limit of an infinite series of nonnegative reals is nonnegative. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 3-Feb-2014.)
Hypotheses
Ref Expression
clim2iser.1  |-  Z  =  ( ZZ>= `  M )
iserge0.2  |-  ( ph  ->  M  e.  ZZ )
iserge0.3  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  A )
iserge0.4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
iserge0.5  |-  ( (
ph  /\  k  e.  Z )  ->  0  <_  ( F `  k
) )
Assertion
Ref Expression
iserge0  |-  ( ph  ->  0  <_  A )
Distinct variable groups:    A, k    k, F    k, M    ph, k    k, Z

Proof of Theorem iserge0
StepHypRef Expression
1 clim2iser.1 . 2  |-  Z  =  ( ZZ>= `  M )
2 iserge0.2 . 2  |-  ( ph  ->  M  e.  ZZ )
3 serclim0 11316 . . 3  |-  ( M  e.  ZZ  ->  seq M (  +  , 
( ( ZZ>= `  M
)  X.  { 0 } ) )  ~~>  0 )
42, 3syl 14 . 2  |-  ( ph  ->  seq M (  +  ,  ( ( ZZ>= `  M )  X.  {
0 } ) )  ~~>  0 )
5 iserge0.3 . 2  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  A )
6 simpr 110 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  Z )
76, 1eleqtrdi 2270 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  ( ZZ>= `  M )
)
8 c0ex 7954 . . . . 5  |-  0  e.  _V
98fvconst2 5735 . . . 4  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( (
( ZZ>= `  M )  X.  { 0 } ) `
 k )  =  0 )
107, 9syl 14 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  (
( ( ZZ>= `  M
)  X.  { 0 } ) `  k
)  =  0 )
11 0re 7960 . . 3  |-  0  e.  RR
1210, 11eqeltrdi 2268 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  (
( ( ZZ>= `  M
)  X.  { 0 } ) `  k
)  e.  RR )
13 iserge0.4 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
14 iserge0.5 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  0  <_  ( F `  k
) )
1510, 14eqbrtrd 4027 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  (
( ( ZZ>= `  M
)  X.  { 0 } ) `  k
)  <_  ( F `  k ) )
161, 2, 4, 5, 12, 13, 15iserle 11353 1  |-  ( ph  ->  0  <_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   {csn 3594   class class class wbr 4005    X. cxp 4626   ` cfv 5218   RRcr 7813   0cc0 7814    + caddc 7817    <_ cle 7996   ZZcz 9256   ZZ>=cuz 9531    seqcseq 10448    ~~> cli 11289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-mulrcl 7913  ax-addcom 7914  ax-mulcom 7915  ax-addass 7916  ax-mulass 7917  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-1rid 7921  ax-0id 7922  ax-rnegex 7923  ax-precex 7924  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-apti 7929  ax-pre-ltadd 7930  ax-pre-mulgt0 7931  ax-pre-mulext 7932  ax-arch 7933  ax-caucvg 7934
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-recs 6309  df-frec 6395  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-reap 8535  df-ap 8542  df-div 8633  df-inn 8923  df-2 8981  df-3 8982  df-4 8983  df-n0 9180  df-z 9257  df-uz 9532  df-rp 9657  df-fz 10012  df-fzo 10146  df-seqfrec 10449  df-exp 10523  df-cj 10854  df-re 10855  df-im 10856  df-rsqrt 11010  df-abs 11011  df-clim 11290
This theorem is referenced by:  isumge0  11441
  Copyright terms: Public domain W3C validator