ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fser0const Unicode version

Theorem fser0const 10724
Description: Simplifying an expression which turns out just to be a constant zero sequence. (Contributed by Jim Kingdon, 16-Sep-2022.)
Hypothesis
Ref Expression
fser0const.z  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
fser0const  |-  ( N  e.  Z  ->  (
n  e.  Z  |->  if ( n  <_  N ,  ( ( Z  X.  { 0 } ) `  n ) ,  0 ) )  =  ( Z  X.  { 0 } ) )
Distinct variable groups:    n, N    n, Z
Allowed substitution hint:    M( n)

Proof of Theorem fser0const
StepHypRef Expression
1 simpr 110 . . . . . 6  |-  ( ( ( N  e.  Z  /\  n  e.  Z
)  /\  n  <_  N )  ->  n  <_  N )
21iftrued 3589 . . . . 5  |-  ( ( ( N  e.  Z  /\  n  e.  Z
)  /\  n  <_  N )  ->  if (
n  <_  N , 
( ( Z  X.  { 0 } ) `
 n ) ,  0 )  =  ( ( Z  X.  {
0 } ) `  n ) )
3 c0ex 8108 . . . . . . 7  |-  0  e.  _V
43fvconst2 5828 . . . . . 6  |-  ( n  e.  Z  ->  (
( Z  X.  {
0 } ) `  n )  =  0 )
54ad2antlr 489 . . . . 5  |-  ( ( ( N  e.  Z  /\  n  e.  Z
)  /\  n  <_  N )  ->  ( ( Z  X.  { 0 } ) `  n )  =  0 )
62, 5eqtrd 2242 . . . 4  |-  ( ( ( N  e.  Z  /\  n  e.  Z
)  /\  n  <_  N )  ->  if (
n  <_  N , 
( ( Z  X.  { 0 } ) `
 n ) ,  0 )  =  0 )
7 simpr 110 . . . . 5  |-  ( ( ( N  e.  Z  /\  n  e.  Z
)  /\  -.  n  <_  N )  ->  -.  n  <_  N )
87iffalsed 3592 . . . 4  |-  ( ( ( N  e.  Z  /\  n  e.  Z
)  /\  -.  n  <_  N )  ->  if ( n  <_  N , 
( ( Z  X.  { 0 } ) `
 n ) ,  0 )  =  0 )
9 eluzelz 9699 . . . . . . 7  |-  ( n  e.  ( ZZ>= `  M
)  ->  n  e.  ZZ )
10 fser0const.z . . . . . . 7  |-  Z  =  ( ZZ>= `  M )
119, 10eleq2s 2304 . . . . . 6  |-  ( n  e.  Z  ->  n  e.  ZZ )
12 eluzelz 9699 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
1312, 10eleq2s 2304 . . . . . 6  |-  ( N  e.  Z  ->  N  e.  ZZ )
14 zdcle 9491 . . . . . 6  |-  ( ( n  e.  ZZ  /\  N  e.  ZZ )  -> DECID  n  <_  N )
1511, 13, 14syl2anr 290 . . . . 5  |-  ( ( N  e.  Z  /\  n  e.  Z )  -> DECID  n  <_  N )
16 exmiddc 840 . . . . 5  |-  (DECID  n  <_  N  ->  ( n  <_  N  \/  -.  n  <_  N ) )
1715, 16syl 14 . . . 4  |-  ( ( N  e.  Z  /\  n  e.  Z )  ->  ( n  <_  N  \/  -.  n  <_  N
) )
186, 8, 17mpjaodan 802 . . 3  |-  ( ( N  e.  Z  /\  n  e.  Z )  ->  if ( n  <_  N ,  ( ( Z  X.  { 0 } ) `  n ) ,  0 )  =  0 )
1918mpteq2dva 4153 . 2  |-  ( N  e.  Z  ->  (
n  e.  Z  |->  if ( n  <_  N ,  ( ( Z  X.  { 0 } ) `  n ) ,  0 ) )  =  ( n  e.  Z  |->  0 ) )
20 fconstmpt 4743 . 2  |-  ( Z  X.  { 0 } )  =  ( n  e.  Z  |->  0 )
2119, 20eqtr4di 2260 1  |-  ( N  e.  Z  ->  (
n  e.  Z  |->  if ( n  <_  N ,  ( ( Z  X.  { 0 } ) `  n ) ,  0 ) )  =  ( Z  X.  { 0 } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 712  DECID wdc 838    = wceq 1375    e. wcel 2180   ifcif 3582   {csn 3646   class class class wbr 4062    |-> cmpt 4124    X. cxp 4694   ` cfv 5294   0cc0 7967    <_ cle 8150   ZZcz 9414   ZZ>=cuz 9690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-inn 9079  df-n0 9338  df-z 9415  df-uz 9691
This theorem is referenced by:  isumz  11866
  Copyright terms: Public domain W3C validator