ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fser0const Unicode version

Theorem fser0const 10240
Description: Simplifying an expression which turns out just to be a constant zero sequence. (Contributed by Jim Kingdon, 16-Sep-2022.)
Hypothesis
Ref Expression
fser0const.z  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
fser0const  |-  ( N  e.  Z  ->  (
n  e.  Z  |->  if ( n  <_  N ,  ( ( Z  X.  { 0 } ) `  n ) ,  0 ) )  =  ( Z  X.  { 0 } ) )
Distinct variable groups:    n, N    n, Z
Allowed substitution hint:    M( n)

Proof of Theorem fser0const
StepHypRef Expression
1 simpr 109 . . . . . 6  |-  ( ( ( N  e.  Z  /\  n  e.  Z
)  /\  n  <_  N )  ->  n  <_  N )
21iftrued 3449 . . . . 5  |-  ( ( ( N  e.  Z  /\  n  e.  Z
)  /\  n  <_  N )  ->  if (
n  <_  N , 
( ( Z  X.  { 0 } ) `
 n ) ,  0 )  =  ( ( Z  X.  {
0 } ) `  n ) )
3 c0ex 7724 . . . . . . 7  |-  0  e.  _V
43fvconst2 5602 . . . . . 6  |-  ( n  e.  Z  ->  (
( Z  X.  {
0 } ) `  n )  =  0 )
54ad2antlr 478 . . . . 5  |-  ( ( ( N  e.  Z  /\  n  e.  Z
)  /\  n  <_  N )  ->  ( ( Z  X.  { 0 } ) `  n )  =  0 )
62, 5eqtrd 2148 . . . 4  |-  ( ( ( N  e.  Z  /\  n  e.  Z
)  /\  n  <_  N )  ->  if (
n  <_  N , 
( ( Z  X.  { 0 } ) `
 n ) ,  0 )  =  0 )
7 simpr 109 . . . . 5  |-  ( ( ( N  e.  Z  /\  n  e.  Z
)  /\  -.  n  <_  N )  ->  -.  n  <_  N )
87iffalsed 3452 . . . 4  |-  ( ( ( N  e.  Z  /\  n  e.  Z
)  /\  -.  n  <_  N )  ->  if ( n  <_  N , 
( ( Z  X.  { 0 } ) `
 n ) ,  0 )  =  0 )
9 eluzelz 9287 . . . . . . 7  |-  ( n  e.  ( ZZ>= `  M
)  ->  n  e.  ZZ )
10 fser0const.z . . . . . . 7  |-  Z  =  ( ZZ>= `  M )
119, 10eleq2s 2210 . . . . . 6  |-  ( n  e.  Z  ->  n  e.  ZZ )
12 eluzelz 9287 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
1312, 10eleq2s 2210 . . . . . 6  |-  ( N  e.  Z  ->  N  e.  ZZ )
14 zdcle 9081 . . . . . 6  |-  ( ( n  e.  ZZ  /\  N  e.  ZZ )  -> DECID  n  <_  N )
1511, 13, 14syl2anr 286 . . . . 5  |-  ( ( N  e.  Z  /\  n  e.  Z )  -> DECID  n  <_  N )
16 exmiddc 804 . . . . 5  |-  (DECID  n  <_  N  ->  ( n  <_  N  \/  -.  n  <_  N ) )
1715, 16syl 14 . . . 4  |-  ( ( N  e.  Z  /\  n  e.  Z )  ->  ( n  <_  N  \/  -.  n  <_  N
) )
186, 8, 17mpjaodan 770 . . 3  |-  ( ( N  e.  Z  /\  n  e.  Z )  ->  if ( n  <_  N ,  ( ( Z  X.  { 0 } ) `  n ) ,  0 )  =  0 )
1918mpteq2dva 3986 . 2  |-  ( N  e.  Z  ->  (
n  e.  Z  |->  if ( n  <_  N ,  ( ( Z  X.  { 0 } ) `  n ) ,  0 ) )  =  ( n  e.  Z  |->  0 ) )
20 fconstmpt 4554 . 2  |-  ( Z  X.  { 0 } )  =  ( n  e.  Z  |->  0 )
2119, 20syl6eqr 2166 1  |-  ( N  e.  Z  ->  (
n  e.  Z  |->  if ( n  <_  N ,  ( ( Z  X.  { 0 } ) `  n ) ,  0 ) )  =  ( Z  X.  { 0 } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 680  DECID wdc 802    = wceq 1314    e. wcel 1463   ifcif 3442   {csn 3495   class class class wbr 3897    |-> cmpt 3957    X. cxp 4505   ` cfv 5091   0cc0 7584    <_ cle 7765   ZZcz 9008   ZZ>=cuz 9278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-addcom 7684  ax-addass 7686  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-0id 7692  ax-rnegex 7693  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-ltadd 7700
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rab 2400  df-v 2660  df-sbc 2881  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-if 3443  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-br 3898  df-opab 3958  df-mpt 3959  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-fv 5099  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-inn 8681  df-n0 8932  df-z 9009  df-uz 9279
This theorem is referenced by:  isumz  11109
  Copyright terms: Public domain W3C validator