| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0cnd | Unicode version | ||
| Description: 0 is a complex number, deductive form. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 0cnd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 8035 |
. 2
| |
| 2 | 1 | a1i 9 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 ax-1cn 7989 ax-icn 7991 ax-addcl 7992 ax-mulcl 7994 ax-i2m1 8001 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: mulap0r 8659 mulap0 8698 mul0eqap 8714 diveqap0 8726 eqneg 8776 div2subap 8881 prodgt0 8896 un0addcl 9299 un0mulcl 9300 modsumfzodifsn 10505 ser0 10642 ser0f 10643 abs00ap 11244 abs00 11246 abssubne0 11273 mul0inf 11423 clim0c 11468 sumrbdclem 11559 summodclem2a 11563 zsumdc 11566 fsum3 11569 isumz 11571 isumss 11573 fisumss 11574 fsum3cvg2 11576 fsum3ser 11579 fsumcl2lem 11580 fsumcl 11582 fsumadd 11588 fsumsplit 11589 sumsnf 11591 sumsplitdc 11614 fsummulc2 11630 ef0lem 11842 ef4p 11876 tanvalap 11890 modprm0 12448 pcmpt2 12538 4sqlem10 12581 4sqlem11 12595 fsumcncntop 14887 limcimolemlt 14984 dvmptcmulcn 15041 dvmptfsum 15045 dveflem 15046 dvef 15047 plyf 15057 elplyr 15060 elplyd 15061 ply1term 15063 plyaddlem 15069 plymullem 15070 plycolemc 15078 plycn 15082 dvply1 15085 ptolemy 15144 lgsdir2 15358 lgsdir 15360 apdiff 15779 iswomni0 15782 |
| Copyright terms: Public domain | W3C validator |