![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0cnd | Unicode version |
Description: 0 is a complex number, deductive form. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
0cnd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 7478 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | a1i 9 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1381 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-4 1445 ax-17 1464 ax-ial 1472 ax-ext 2070 ax-1cn 7436 ax-icn 7438 ax-addcl 7439 ax-mulcl 7441 ax-i2m1 7448 |
This theorem depends on definitions: df-bi 115 df-cleq 2081 df-clel 2084 |
This theorem is referenced by: mulap0r 8090 mulap0 8121 diveqap0 8147 eqneg 8197 div2subap 8300 prodgt0 8311 un0addcl 8704 un0mulcl 8705 modsumfzodifsn 9799 iser0 9943 iser0f 9944 ser0 9945 ser0f 9946 abs00ap 10491 abssubne0 10520 clim0c 10670 isumrblem 10761 isummolem2a 10767 zisum 10770 fisum 10774 fsum3 10775 isumz 10777 isumss 10779 fisumss 10780 fisumcvg2 10782 fsum3cvg2 10783 fisumser 10786 fsumcl2lem 10788 fsumcl 10790 fsumadd 10796 fsumsplit 10797 sumsnf 10799 sumsplitdc 10822 fsummulc2 10838 ef0lem 10946 ef4p 10980 tanvalap 10995 |
Copyright terms: Public domain | W3C validator |