| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0cnd | Unicode version | ||
| Description: 0 is a complex number, deductive form. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 0cnd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 8066 |
. 2
| |
| 2 | 1 | a1i 9 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-ext 2187 ax-1cn 8020 ax-icn 8022 ax-addcl 8023 ax-mulcl 8025 ax-i2m1 8032 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-clel 2201 |
| This theorem is referenced by: mulap0r 8690 mulap0 8729 mul0eqap 8745 diveqap0 8757 eqneg 8807 div2subap 8912 prodgt0 8927 un0addcl 9330 un0mulcl 9331 modsumfzodifsn 10543 ser0 10680 ser0f 10681 abs00ap 11406 abs00 11408 abssubne0 11435 mul0inf 11585 clim0c 11630 sumrbdclem 11721 summodclem2a 11725 zsumdc 11728 fsum3 11731 isumz 11733 isumss 11735 fisumss 11736 fsum3cvg2 11738 fsum3ser 11741 fsumcl2lem 11742 fsumcl 11744 fsumadd 11750 fsumsplit 11751 sumsnf 11753 sumsplitdc 11776 fsummulc2 11792 ef0lem 12004 ef4p 12038 tanvalap 12052 modprm0 12610 pcmpt2 12700 4sqlem10 12743 4sqlem11 12757 fsumcncntop 15072 limcimolemlt 15169 dvmptcmulcn 15226 dvmptfsum 15230 dveflem 15231 dvef 15232 plyf 15242 elplyr 15245 elplyd 15246 ply1term 15248 plyaddlem 15254 plymullem 15255 plycolemc 15263 plycn 15267 dvply1 15270 ptolemy 15329 lgsdir2 15543 lgsdir 15545 apdiff 16024 iswomni0 16027 |
| Copyright terms: Public domain | W3C validator |