![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0cnd | Unicode version |
Description: 0 is a complex number, deductive form. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
0cnd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 8013 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | a1i 9 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 ax-1cn 7967 ax-icn 7969 ax-addcl 7970 ax-mulcl 7972 ax-i2m1 7979 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-clel 2189 |
This theorem is referenced by: mulap0r 8636 mulap0 8675 mul0eqap 8691 diveqap0 8703 eqneg 8753 div2subap 8858 prodgt0 8873 un0addcl 9276 un0mulcl 9277 modsumfzodifsn 10470 ser0 10607 ser0f 10608 abs00ap 11209 abs00 11211 abssubne0 11238 mul0inf 11387 clim0c 11432 sumrbdclem 11523 summodclem2a 11527 zsumdc 11530 fsum3 11533 isumz 11535 isumss 11537 fisumss 11538 fsum3cvg2 11540 fsum3ser 11543 fsumcl2lem 11544 fsumcl 11546 fsumadd 11552 fsumsplit 11553 sumsnf 11555 sumsplitdc 11578 fsummulc2 11594 ef0lem 11806 ef4p 11840 tanvalap 11854 modprm0 12395 pcmpt2 12485 4sqlem10 12528 4sqlem11 12542 fsumcncntop 14746 limcimolemlt 14843 dvmptcmulcn 14900 dvmptfsum 14904 dveflem 14905 dvef 14906 plyf 14916 elplyr 14919 elplyd 14920 ply1term 14922 plyaddlem 14928 plymullem 14929 plycolemc 14936 plycn 14940 dvply1 14943 ptolemy 15000 lgsdir2 15190 lgsdir 15192 apdiff 15608 iswomni0 15611 |
Copyright terms: Public domain | W3C validator |