![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0cnd | Unicode version |
Description: 0 is a complex number, deductive form. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
0cnd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 7949 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | a1i 9 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-17 1526 ax-ial 1534 ax-ext 2159 ax-1cn 7904 ax-icn 7906 ax-addcl 7907 ax-mulcl 7909 ax-i2m1 7916 |
This theorem depends on definitions: df-bi 117 df-cleq 2170 df-clel 2173 |
This theorem is referenced by: mulap0r 8572 mulap0 8611 mul0eqap 8627 diveqap0 8639 eqneg 8689 div2subap 8794 prodgt0 8809 un0addcl 9209 un0mulcl 9210 modsumfzodifsn 10396 ser0 10514 ser0f 10515 abs00ap 11071 abs00 11073 abssubne0 11100 mul0inf 11249 clim0c 11294 sumrbdclem 11385 summodclem2a 11389 zsumdc 11392 fsum3 11395 isumz 11397 isumss 11399 fisumss 11400 fsum3cvg2 11402 fsum3ser 11405 fsumcl2lem 11406 fsumcl 11408 fsumadd 11414 fsumsplit 11415 sumsnf 11417 sumsplitdc 11440 fsummulc2 11456 ef0lem 11668 ef4p 11702 tanvalap 11716 modprm0 12254 pcmpt2 12342 4sqlem10 12385 fsumcncntop 14059 limcimolemlt 14136 dvmptcmulcn 14186 dveflem 14190 dvef 14191 ptolemy 14248 lgsdir2 14437 lgsdir 14439 apdiff 14799 iswomni0 14802 |
Copyright terms: Public domain | W3C validator |