![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0cnd | Unicode version |
Description: 0 is a complex number, deductive form. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
0cnd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 7962 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | a1i 9 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1457 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-4 1520 ax-17 1536 ax-ial 1544 ax-ext 2169 ax-1cn 7917 ax-icn 7919 ax-addcl 7920 ax-mulcl 7922 ax-i2m1 7929 |
This theorem depends on definitions: df-bi 117 df-cleq 2180 df-clel 2183 |
This theorem is referenced by: mulap0r 8585 mulap0 8624 mul0eqap 8640 diveqap0 8652 eqneg 8702 div2subap 8807 prodgt0 8822 un0addcl 9222 un0mulcl 9223 modsumfzodifsn 10409 ser0 10527 ser0f 10528 abs00ap 11084 abs00 11086 abssubne0 11113 mul0inf 11262 clim0c 11307 sumrbdclem 11398 summodclem2a 11402 zsumdc 11405 fsum3 11408 isumz 11410 isumss 11412 fisumss 11413 fsum3cvg2 11415 fsum3ser 11418 fsumcl2lem 11419 fsumcl 11421 fsumadd 11427 fsumsplit 11428 sumsnf 11430 sumsplitdc 11453 fsummulc2 11469 ef0lem 11681 ef4p 11715 tanvalap 11729 modprm0 12267 pcmpt2 12355 4sqlem10 12398 fsumcncntop 14327 limcimolemlt 14404 dvmptcmulcn 14454 dveflem 14458 dvef 14459 ptolemy 14516 lgsdir2 14705 lgsdir 14707 apdiff 15068 iswomni0 15071 |
Copyright terms: Public domain | W3C validator |