| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0cnd | Unicode version | ||
| Description: 0 is a complex number, deductive form. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 0cnd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 8138 |
. 2
| |
| 2 | 1 | a1i 9 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 ax-1cn 8092 ax-icn 8094 ax-addcl 8095 ax-mulcl 8097 ax-i2m1 8104 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-clel 2225 |
| This theorem is referenced by: mulap0r 8762 mulap0 8801 mul0eqap 8817 diveqap0 8829 eqneg 8879 div2subap 8984 prodgt0 8999 un0addcl 9402 un0mulcl 9403 modsumfzodifsn 10618 ser0 10755 ser0f 10756 abs00ap 11573 abs00 11575 abssubne0 11602 mul0inf 11752 clim0c 11797 sumrbdclem 11888 summodclem2a 11892 zsumdc 11895 fsum3 11898 isumz 11900 isumss 11902 fisumss 11903 fsum3cvg2 11905 fsum3ser 11908 fsumcl2lem 11909 fsumcl 11911 fsumadd 11917 fsumsplit 11918 sumsnf 11920 sumsplitdc 11943 fsummulc2 11959 ef0lem 12171 ef4p 12205 tanvalap 12219 modprm0 12777 pcmpt2 12867 4sqlem10 12910 4sqlem11 12924 fsumcncntop 15241 limcimolemlt 15338 dvmptcmulcn 15395 dvmptfsum 15399 dveflem 15400 dvef 15401 plyf 15411 elplyr 15414 elplyd 15415 ply1term 15417 plyaddlem 15423 plymullem 15424 plycolemc 15432 plycn 15436 dvply1 15439 ptolemy 15498 lgsdir2 15712 lgsdir 15714 apdiff 16416 iswomni0 16419 |
| Copyright terms: Public domain | W3C validator |