Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > caofref | Unicode version |
Description: Transfer a reflexive law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014.) |
Ref | Expression |
---|---|
caofref.1 | |
caofref.2 | |
caofref.3 |
Ref | Expression |
---|---|
caofref |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . . . 5 | |
2 | 1, 1 | breq12d 4002 | . . . 4 |
3 | caofref.3 | . . . . . 6 | |
4 | 3 | ralrimiva 2543 | . . . . 5 |
5 | 4 | adantr 274 | . . . 4 |
6 | caofref.2 | . . . . 5 | |
7 | 6 | ffvelrnda 5631 | . . . 4 |
8 | 2, 5, 7 | rspcdva 2839 | . . 3 |
9 | 8 | ralrimiva 2543 | . 2 |
10 | ffn 5347 | . . . 4 | |
11 | 6, 10 | syl 14 | . . 3 |
12 | caofref.1 | . . 3 | |
13 | inidm 3336 | . . 3 | |
14 | eqidd 2171 | . . 3 | |
15 | 11, 11, 12, 12, 13, 14, 14 | ofrfval 6069 | . 2 |
16 | 9, 15 | mpbird 166 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 wral 2448 class class class wbr 3989 wfn 5193 wf 5194 cfv 5198 cofr 6060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ofr 6062 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |