ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caofref Unicode version

Theorem caofref 6164
Description: Transfer a reflexive law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
caofref.1  |-  ( ph  ->  A  e.  V )
caofref.2  |-  ( ph  ->  F : A --> S )
caofref.3  |-  ( (
ph  /\  x  e.  S )  ->  x R x )
Assertion
Ref Expression
caofref  |-  ( ph  ->  F  oR R F )
Distinct variable groups:    x, F    ph, x    x, R    x, S
Allowed substitution hints:    A( x)    V( x)

Proof of Theorem caofref
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 id 19 . . . . 5  |-  ( x  =  ( F `  w )  ->  x  =  ( F `  w ) )
21, 1breq12d 4047 . . . 4  |-  ( x  =  ( F `  w )  ->  (
x R x  <->  ( F `  w ) R ( F `  w ) ) )
3 caofref.3 . . . . . 6  |-  ( (
ph  /\  x  e.  S )  ->  x R x )
43ralrimiva 2570 . . . . 5  |-  ( ph  ->  A. x  e.  S  x R x )
54adantr 276 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  A. x  e.  S  x R x )
6 caofref.2 . . . . 5  |-  ( ph  ->  F : A --> S )
76ffvelcdmda 5700 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  ( F `  w )  e.  S )
82, 5, 7rspcdva 2873 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  ( F `  w ) R ( F `  w ) )
98ralrimiva 2570 . 2  |-  ( ph  ->  A. w  e.  A  ( F `  w ) R ( F `  w ) )
10 ffn 5410 . . . 4  |-  ( F : A --> S  ->  F  Fn  A )
116, 10syl 14 . . 3  |-  ( ph  ->  F  Fn  A )
12 caofref.1 . . 3  |-  ( ph  ->  A  e.  V )
13 inidm 3373 . . 3  |-  ( A  i^i  A )  =  A
14 eqidd 2197 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  ( F `  w )  =  ( F `  w ) )
1511, 11, 12, 12, 13, 14, 14ofrfval 6148 . 2  |-  ( ph  ->  ( F  oR R F  <->  A. w  e.  A  ( F `  w ) R ( F `  w ) ) )
169, 15mpbird 167 1  |-  ( ph  ->  F  oR R F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   A.wral 2475   class class class wbr 4034    Fn wfn 5254   -->wf 5255   ` cfv 5259    oRcofr 6138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ofr 6140
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator