ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caofref Unicode version

Theorem caofref 6154
Description: Transfer a reflexive law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
caofref.1  |-  ( ph  ->  A  e.  V )
caofref.2  |-  ( ph  ->  F : A --> S )
caofref.3  |-  ( (
ph  /\  x  e.  S )  ->  x R x )
Assertion
Ref Expression
caofref  |-  ( ph  ->  F  oR R F )
Distinct variable groups:    x, F    ph, x    x, R    x, S
Allowed substitution hints:    A( x)    V( x)

Proof of Theorem caofref
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 id 19 . . . . 5  |-  ( x  =  ( F `  w )  ->  x  =  ( F `  w ) )
21, 1breq12d 4042 . . . 4  |-  ( x  =  ( F `  w )  ->  (
x R x  <->  ( F `  w ) R ( F `  w ) ) )
3 caofref.3 . . . . . 6  |-  ( (
ph  /\  x  e.  S )  ->  x R x )
43ralrimiva 2567 . . . . 5  |-  ( ph  ->  A. x  e.  S  x R x )
54adantr 276 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  A. x  e.  S  x R x )
6 caofref.2 . . . . 5  |-  ( ph  ->  F : A --> S )
76ffvelcdmda 5693 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  ( F `  w )  e.  S )
82, 5, 7rspcdva 2869 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  ( F `  w ) R ( F `  w ) )
98ralrimiva 2567 . 2  |-  ( ph  ->  A. w  e.  A  ( F `  w ) R ( F `  w ) )
10 ffn 5403 . . . 4  |-  ( F : A --> S  ->  F  Fn  A )
116, 10syl 14 . . 3  |-  ( ph  ->  F  Fn  A )
12 caofref.1 . . 3  |-  ( ph  ->  A  e.  V )
13 inidm 3368 . . 3  |-  ( A  i^i  A )  =  A
14 eqidd 2194 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  ( F `  w )  =  ( F `  w ) )
1511, 11, 12, 12, 13, 14, 14ofrfval 6139 . 2  |-  ( ph  ->  ( F  oR R F  <->  A. w  e.  A  ( F `  w ) R ( F `  w ) ) )
169, 15mpbird 167 1  |-  ( ph  ->  F  oR R F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   A.wral 2472   class class class wbr 4029    Fn wfn 5249   -->wf 5250   ` cfv 5254    oRcofr 6129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ofr 6131
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator