ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caofref Unicode version

Theorem caofref 6117
Description: Transfer a reflexive law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
caofref.1  |-  ( ph  ->  A  e.  V )
caofref.2  |-  ( ph  ->  F : A --> S )
caofref.3  |-  ( (
ph  /\  x  e.  S )  ->  x R x )
Assertion
Ref Expression
caofref  |-  ( ph  ->  F  oR R F )
Distinct variable groups:    x, F    ph, x    x, R    x, S
Allowed substitution hints:    A( x)    V( x)

Proof of Theorem caofref
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 id 19 . . . . 5  |-  ( x  =  ( F `  w )  ->  x  =  ( F `  w ) )
21, 1breq12d 4028 . . . 4  |-  ( x  =  ( F `  w )  ->  (
x R x  <->  ( F `  w ) R ( F `  w ) ) )
3 caofref.3 . . . . . 6  |-  ( (
ph  /\  x  e.  S )  ->  x R x )
43ralrimiva 2560 . . . . 5  |-  ( ph  ->  A. x  e.  S  x R x )
54adantr 276 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  A. x  e.  S  x R x )
6 caofref.2 . . . . 5  |-  ( ph  ->  F : A --> S )
76ffvelcdmda 5664 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  ( F `  w )  e.  S )
82, 5, 7rspcdva 2858 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  ( F `  w ) R ( F `  w ) )
98ralrimiva 2560 . 2  |-  ( ph  ->  A. w  e.  A  ( F `  w ) R ( F `  w ) )
10 ffn 5377 . . . 4  |-  ( F : A --> S  ->  F  Fn  A )
116, 10syl 14 . . 3  |-  ( ph  ->  F  Fn  A )
12 caofref.1 . . 3  |-  ( ph  ->  A  e.  V )
13 inidm 3356 . . 3  |-  ( A  i^i  A )  =  A
14 eqidd 2188 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  ( F `  w )  =  ( F `  w ) )
1511, 11, 12, 12, 13, 14, 14ofrfval 6104 . 2  |-  ( ph  ->  ( F  oR R F  <->  A. w  e.  A  ( F `  w ) R ( F `  w ) ) )
169, 15mpbird 167 1  |-  ( ph  ->  F  oR R F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1363    e. wcel 2158   A.wral 2465   class class class wbr 4015    Fn wfn 5223   -->wf 5224   ` cfv 5228    oRcofr 6095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-pow 4186  ax-pr 4221
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-ofr 6097
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator