![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > caofref | GIF version |
Description: Transfer a reflexive law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014.) |
Ref | Expression |
---|---|
caofref.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
caofref.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
caofref.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥𝑅𝑥) |
Ref | Expression |
---|---|
caofref | ⊢ (𝜑 → 𝐹 ∘𝑟 𝑅𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . . . 5 ⊢ (𝑥 = (𝐹‘𝑤) → 𝑥 = (𝐹‘𝑤)) | |
2 | 1, 1 | breq12d 4016 | . . . 4 ⊢ (𝑥 = (𝐹‘𝑤) → (𝑥𝑅𝑥 ↔ (𝐹‘𝑤)𝑅(𝐹‘𝑤))) |
3 | caofref.3 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥𝑅𝑥) | |
4 | 3 | ralrimiva 2550 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 𝑥𝑅𝑥) |
5 | 4 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ∀𝑥 ∈ 𝑆 𝑥𝑅𝑥) |
6 | caofref.2 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
7 | 6 | ffvelcdmda 5651 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) ∈ 𝑆) |
8 | 2, 5, 7 | rspcdva 2846 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤)𝑅(𝐹‘𝑤)) |
9 | 8 | ralrimiva 2550 | . 2 ⊢ (𝜑 → ∀𝑤 ∈ 𝐴 (𝐹‘𝑤)𝑅(𝐹‘𝑤)) |
10 | ffn 5365 | . . . 4 ⊢ (𝐹:𝐴⟶𝑆 → 𝐹 Fn 𝐴) | |
11 | 6, 10 | syl 14 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
12 | caofref.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
13 | inidm 3344 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
14 | eqidd 2178 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) = (𝐹‘𝑤)) | |
15 | 11, 11, 12, 12, 13, 14, 14 | ofrfval 6090 | . 2 ⊢ (𝜑 → (𝐹 ∘𝑟 𝑅𝐹 ↔ ∀𝑤 ∈ 𝐴 (𝐹‘𝑤)𝑅(𝐹‘𝑤))) |
16 | 9, 15 | mpbird 167 | 1 ⊢ (𝜑 → 𝐹 ∘𝑟 𝑅𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 ∀wral 2455 class class class wbr 4003 Fn wfn 5211 ⟶wf 5212 ‘cfv 5216 ∘𝑟 cofr 6081 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-coll 4118 ax-sep 4121 ax-pow 4174 ax-pr 4209 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-iun 3888 df-br 4004 df-opab 4065 df-mpt 4066 df-id 4293 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-rn 4637 df-res 4638 df-ima 4639 df-iota 5178 df-fun 5218 df-fn 5219 df-f 5220 df-f1 5221 df-fo 5222 df-f1o 5223 df-fv 5224 df-ofr 6083 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |