ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caofref GIF version

Theorem caofref 6213
Description: Transfer a reflexive law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
caofref.1 (𝜑𝐴𝑉)
caofref.2 (𝜑𝐹:𝐴𝑆)
caofref.3 ((𝜑𝑥𝑆) → 𝑥𝑅𝑥)
Assertion
Ref Expression
caofref (𝜑𝐹𝑟 𝑅𝐹)
Distinct variable groups:   𝑥,𝐹   𝜑,𝑥   𝑥,𝑅   𝑥,𝑆
Allowed substitution hints:   𝐴(𝑥)   𝑉(𝑥)

Proof of Theorem caofref
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 id 19 . . . . 5 (𝑥 = (𝐹𝑤) → 𝑥 = (𝐹𝑤))
21, 1breq12d 4075 . . . 4 (𝑥 = (𝐹𝑤) → (𝑥𝑅𝑥 ↔ (𝐹𝑤)𝑅(𝐹𝑤)))
3 caofref.3 . . . . . 6 ((𝜑𝑥𝑆) → 𝑥𝑅𝑥)
43ralrimiva 2583 . . . . 5 (𝜑 → ∀𝑥𝑆 𝑥𝑅𝑥)
54adantr 276 . . . 4 ((𝜑𝑤𝐴) → ∀𝑥𝑆 𝑥𝑅𝑥)
6 caofref.2 . . . . 5 (𝜑𝐹:𝐴𝑆)
76ffvelcdmda 5743 . . . 4 ((𝜑𝑤𝐴) → (𝐹𝑤) ∈ 𝑆)
82, 5, 7rspcdva 2892 . . 3 ((𝜑𝑤𝐴) → (𝐹𝑤)𝑅(𝐹𝑤))
98ralrimiva 2583 . 2 (𝜑 → ∀𝑤𝐴 (𝐹𝑤)𝑅(𝐹𝑤))
10 ffn 5449 . . . 4 (𝐹:𝐴𝑆𝐹 Fn 𝐴)
116, 10syl 14 . . 3 (𝜑𝐹 Fn 𝐴)
12 caofref.1 . . 3 (𝜑𝐴𝑉)
13 inidm 3393 . . 3 (𝐴𝐴) = 𝐴
14 eqidd 2210 . . 3 ((𝜑𝑤𝐴) → (𝐹𝑤) = (𝐹𝑤))
1511, 11, 12, 12, 13, 14, 14ofrfval 6197 . 2 (𝜑 → (𝐹𝑟 𝑅𝐹 ↔ ∀𝑤𝐴 (𝐹𝑤)𝑅(𝐹𝑤)))
169, 15mpbird 167 1 (𝜑𝐹𝑟 𝑅𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wcel 2180  wral 2488   class class class wbr 4062   Fn wfn 5289  wf 5290  cfv 5294  𝑟 cofr 6187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ofr 6189
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator