| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > caofref | GIF version | ||
| Description: Transfer a reflexive law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014.) | 
| Ref | Expression | 
|---|---|
| caofref.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) | 
| caofref.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | 
| caofref.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥𝑅𝑥) | 
| Ref | Expression | 
|---|---|
| caofref | ⊢ (𝜑 → 𝐹 ∘𝑟 𝑅𝐹) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | id 19 | . . . . 5 ⊢ (𝑥 = (𝐹‘𝑤) → 𝑥 = (𝐹‘𝑤)) | |
| 2 | 1, 1 | breq12d 4046 | . . . 4 ⊢ (𝑥 = (𝐹‘𝑤) → (𝑥𝑅𝑥 ↔ (𝐹‘𝑤)𝑅(𝐹‘𝑤))) | 
| 3 | caofref.3 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥𝑅𝑥) | |
| 4 | 3 | ralrimiva 2570 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 𝑥𝑅𝑥) | 
| 5 | 4 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ∀𝑥 ∈ 𝑆 𝑥𝑅𝑥) | 
| 6 | caofref.2 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
| 7 | 6 | ffvelcdmda 5697 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) ∈ 𝑆) | 
| 8 | 2, 5, 7 | rspcdva 2873 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤)𝑅(𝐹‘𝑤)) | 
| 9 | 8 | ralrimiva 2570 | . 2 ⊢ (𝜑 → ∀𝑤 ∈ 𝐴 (𝐹‘𝑤)𝑅(𝐹‘𝑤)) | 
| 10 | ffn 5407 | . . . 4 ⊢ (𝐹:𝐴⟶𝑆 → 𝐹 Fn 𝐴) | |
| 11 | 6, 10 | syl 14 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | 
| 12 | caofref.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 13 | inidm 3372 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
| 14 | eqidd 2197 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) = (𝐹‘𝑤)) | |
| 15 | 11, 11, 12, 12, 13, 14, 14 | ofrfval 6144 | . 2 ⊢ (𝜑 → (𝐹 ∘𝑟 𝑅𝐹 ↔ ∀𝑤 ∈ 𝐴 (𝐹‘𝑤)𝑅(𝐹‘𝑤))) | 
| 16 | 9, 15 | mpbird 167 | 1 ⊢ (𝜑 → 𝐹 ∘𝑟 𝑅𝐹) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∀wral 2475 class class class wbr 4033 Fn wfn 5253 ⟶wf 5254 ‘cfv 5258 ∘𝑟 cofr 6134 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ofr 6136 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |