ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofc12 Unicode version

Theorem ofc12 6103
Description: Function operation on two constant functions. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
ofc12.1  |-  ( ph  ->  A  e.  V )
ofc12.2  |-  ( ph  ->  B  e.  W )
ofc12.3  |-  ( ph  ->  C  e.  X )
Assertion
Ref Expression
ofc12  |-  ( ph  ->  ( ( A  X.  { B } )  oF R ( A  X.  { C }
) )  =  ( A  X.  { ( B R C ) } ) )

Proof of Theorem ofc12
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ofc12.1 . . 3  |-  ( ph  ->  A  e.  V )
2 ofc12.2 . . . 4  |-  ( ph  ->  B  e.  W )
32adantr 276 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  W )
4 ofc12.3 . . . 4  |-  ( ph  ->  C  e.  X )
54adantr 276 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  X )
6 fconstmpt 4674 . . . 4  |-  ( A  X.  { B }
)  =  ( x  e.  A  |->  B )
76a1i 9 . . 3  |-  ( ph  ->  ( A  X.  { B } )  =  ( x  e.  A  |->  B ) )
8 fconstmpt 4674 . . . 4  |-  ( A  X.  { C }
)  =  ( x  e.  A  |->  C )
98a1i 9 . . 3  |-  ( ph  ->  ( A  X.  { C } )  =  ( x  e.  A  |->  C ) )
101, 3, 5, 7, 9offval2 6098 . 2  |-  ( ph  ->  ( ( A  X.  { B } )  oF R ( A  X.  { C }
) )  =  ( x  e.  A  |->  ( B R C ) ) )
11 fconstmpt 4674 . 2  |-  ( A  X.  { ( B R C ) } )  =  ( x  e.  A  |->  ( B R C ) )
1210, 11eqtr4di 2228 1  |-  ( ph  ->  ( ( A  X.  { B } )  oF R ( A  X.  { C }
) )  =  ( A  X.  { ( B R C ) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148   {csn 3593    |-> cmpt 4065    X. cxp 4625  (class class class)co 5875    oFcof 6081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-setind 4537
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-of 6083
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator