ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofc12 Unicode version

Theorem ofc12 6010
Description: Function operation on two constant functions. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
ofc12.1  |-  ( ph  ->  A  e.  V )
ofc12.2  |-  ( ph  ->  B  e.  W )
ofc12.3  |-  ( ph  ->  C  e.  X )
Assertion
Ref Expression
ofc12  |-  ( ph  ->  ( ( A  X.  { B } )  oF R ( A  X.  { C }
) )  =  ( A  X.  { ( B R C ) } ) )

Proof of Theorem ofc12
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ofc12.1 . . 3  |-  ( ph  ->  A  e.  V )
2 ofc12.2 . . . 4  |-  ( ph  ->  B  e.  W )
32adantr 274 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  W )
4 ofc12.3 . . . 4  |-  ( ph  ->  C  e.  X )
54adantr 274 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  X )
6 fconstmpt 4594 . . . 4  |-  ( A  X.  { B }
)  =  ( x  e.  A  |->  B )
76a1i 9 . . 3  |-  ( ph  ->  ( A  X.  { B } )  =  ( x  e.  A  |->  B ) )
8 fconstmpt 4594 . . . 4  |-  ( A  X.  { C }
)  =  ( x  e.  A  |->  C )
98a1i 9 . . 3  |-  ( ph  ->  ( A  X.  { C } )  =  ( x  e.  A  |->  C ) )
101, 3, 5, 7, 9offval2 6005 . 2  |-  ( ph  ->  ( ( A  X.  { B } )  oF R ( A  X.  { C }
) )  =  ( x  e.  A  |->  ( B R C ) ) )
11 fconstmpt 4594 . 2  |-  ( A  X.  { ( B R C ) } )  =  ( x  e.  A  |->  ( B R C ) )
1210, 11eqtr4di 2191 1  |-  ( ph  ->  ( ( A  X.  { B } )  oF R ( A  X.  { C }
) )  =  ( A  X.  { ( B R C ) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1332    e. wcel 1481   {csn 3532    |-> cmpt 3997    X. cxp 4545  (class class class)co 5782    oFcof 5988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-setind 4460
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-of 5990
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator