ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caofinvl Unicode version

Theorem caofinvl 6107
Description: Transfer a left inverse law to the function operation. (Contributed by NM, 22-Oct-2014.)
Hypotheses
Ref Expression
caofref.1  |-  ( ph  ->  A  e.  V )
caofref.2  |-  ( ph  ->  F : A --> S )
caofinv.3  |-  ( ph  ->  B  e.  W )
caofinv.4  |-  ( ph  ->  N : S --> S )
caofinv.5  |-  ( ph  ->  G  =  ( v  e.  A  |->  ( N `
 ( F `  v ) ) ) )
caofinvl.6  |-  ( (
ph  /\  x  e.  S )  ->  (
( N `  x
) R x )  =  B )
Assertion
Ref Expression
caofinvl  |-  ( ph  ->  ( G  oF R F )  =  ( A  X.  { B } ) )
Distinct variable groups:    x, B    x, F    x, G    ph, x    x, R    x, S    v, A    v, F, x    x, N, v    v, S    ph, v
Allowed substitution hints:    A( x)    B( v)    R( v)    G( v)    V( x, v)    W( x, v)

Proof of Theorem caofinvl
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 caofref.1 . . . 4  |-  ( ph  ->  A  e.  V )
2 caofinv.4 . . . . . . . . 9  |-  ( ph  ->  N : S --> S )
32adantr 276 . . . . . . . 8  |-  ( (
ph  /\  v  e.  A )  ->  N : S --> S )
4 caofref.2 . . . . . . . . 9  |-  ( ph  ->  F : A --> S )
54ffvelcdmda 5653 . . . . . . . 8  |-  ( (
ph  /\  v  e.  A )  ->  ( F `  v )  e.  S )
63, 5ffvelcdmd 5654 . . . . . . 7  |-  ( (
ph  /\  v  e.  A )  ->  ( N `  ( F `  v ) )  e.  S )
7 eqid 2177 . . . . . . 7  |-  ( v  e.  A  |->  ( N `
 ( F `  v ) ) )  =  ( v  e.  A  |->  ( N `  ( F `  v ) ) )
86, 7fmptd 5672 . . . . . 6  |-  ( ph  ->  ( v  e.  A  |->  ( N `  ( F `  v )
) ) : A --> S )
9 caofinv.5 . . . . . . 7  |-  ( ph  ->  G  =  ( v  e.  A  |->  ( N `
 ( F `  v ) ) ) )
109feq1d 5354 . . . . . 6  |-  ( ph  ->  ( G : A --> S 
<->  ( v  e.  A  |->  ( N `  ( F `  v )
) ) : A --> S ) )
118, 10mpbird 167 . . . . 5  |-  ( ph  ->  G : A --> S )
1211ffvelcdmda 5653 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  ( G `  w )  e.  S )
134ffvelcdmda 5653 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  ( F `  w )  e.  S )
146ralrimiva 2550 . . . . . . 7  |-  ( ph  ->  A. v  e.  A  ( N `  ( F `
 v ) )  e.  S )
157fnmpt 5344 . . . . . . 7  |-  ( A. v  e.  A  ( N `  ( F `  v ) )  e.  S  ->  ( v  e.  A  |->  ( N `
 ( F `  v ) ) )  Fn  A )
1614, 15syl 14 . . . . . 6  |-  ( ph  ->  ( v  e.  A  |->  ( N `  ( F `  v )
) )  Fn  A
)
179fneq1d 5308 . . . . . 6  |-  ( ph  ->  ( G  Fn  A  <->  ( v  e.  A  |->  ( N `  ( F `
 v ) ) )  Fn  A ) )
1816, 17mpbird 167 . . . . 5  |-  ( ph  ->  G  Fn  A )
19 dffn5im 5563 . . . . 5  |-  ( G  Fn  A  ->  G  =  ( w  e.  A  |->  ( G `  w ) ) )
2018, 19syl 14 . . . 4  |-  ( ph  ->  G  =  ( w  e.  A  |->  ( G `
 w ) ) )
214feqmptd 5571 . . . 4  |-  ( ph  ->  F  =  ( w  e.  A  |->  ( F `
 w ) ) )
221, 12, 13, 20, 21offval2 6100 . . 3  |-  ( ph  ->  ( G  oF R F )  =  ( w  e.  A  |->  ( ( G `  w ) R ( F `  w ) ) ) )
239fveq1d 5519 . . . . . . . 8  |-  ( ph  ->  ( G `  w
)  =  ( ( v  e.  A  |->  ( N `  ( F `
 v ) ) ) `  w ) )
2423adantr 276 . . . . . . 7  |-  ( (
ph  /\  w  e.  A )  ->  ( G `  w )  =  ( ( v  e.  A  |->  ( N `
 ( F `  v ) ) ) `
 w ) )
25 simpr 110 . . . . . . . 8  |-  ( (
ph  /\  w  e.  A )  ->  w  e.  A )
262adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  w  e.  A )  ->  N : S --> S )
2726, 13ffvelcdmd 5654 . . . . . . . 8  |-  ( (
ph  /\  w  e.  A )  ->  ( N `  ( F `  w ) )  e.  S )
28 fveq2 5517 . . . . . . . . . 10  |-  ( v  =  w  ->  ( F `  v )  =  ( F `  w ) )
2928fveq2d 5521 . . . . . . . . 9  |-  ( v  =  w  ->  ( N `  ( F `  v ) )  =  ( N `  ( F `  w )
) )
3029, 7fvmptg 5594 . . . . . . . 8  |-  ( ( w  e.  A  /\  ( N `  ( F `
 w ) )  e.  S )  -> 
( ( v  e.  A  |->  ( N `  ( F `  v ) ) ) `  w
)  =  ( N `
 ( F `  w ) ) )
3125, 27, 30syl2anc 411 . . . . . . 7  |-  ( (
ph  /\  w  e.  A )  ->  (
( v  e.  A  |->  ( N `  ( F `  v )
) ) `  w
)  =  ( N `
 ( F `  w ) ) )
3224, 31eqtrd 2210 . . . . . 6  |-  ( (
ph  /\  w  e.  A )  ->  ( G `  w )  =  ( N `  ( F `  w ) ) )
3332oveq1d 5892 . . . . 5  |-  ( (
ph  /\  w  e.  A )  ->  (
( G `  w
) R ( F `
 w ) )  =  ( ( N `
 ( F `  w ) ) R ( F `  w
) ) )
34 fveq2 5517 . . . . . . . 8  |-  ( x  =  ( F `  w )  ->  ( N `  x )  =  ( N `  ( F `  w ) ) )
35 id 19 . . . . . . . 8  |-  ( x  =  ( F `  w )  ->  x  =  ( F `  w ) )
3634, 35oveq12d 5895 . . . . . . 7  |-  ( x  =  ( F `  w )  ->  (
( N `  x
) R x )  =  ( ( N `
 ( F `  w ) ) R ( F `  w
) ) )
3736eqeq1d 2186 . . . . . 6  |-  ( x  =  ( F `  w )  ->  (
( ( N `  x ) R x )  =  B  <->  ( ( N `  ( F `  w ) ) R ( F `  w
) )  =  B ) )
38 caofinvl.6 . . . . . . . 8  |-  ( (
ph  /\  x  e.  S )  ->  (
( N `  x
) R x )  =  B )
3938ralrimiva 2550 . . . . . . 7  |-  ( ph  ->  A. x  e.  S  ( ( N `  x ) R x )  =  B )
4039adantr 276 . . . . . 6  |-  ( (
ph  /\  w  e.  A )  ->  A. x  e.  S  ( ( N `  x ) R x )  =  B )
4137, 40, 13rspcdva 2848 . . . . 5  |-  ( (
ph  /\  w  e.  A )  ->  (
( N `  ( F `  w )
) R ( F `
 w ) )  =  B )
4233, 41eqtrd 2210 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  (
( G `  w
) R ( F `
 w ) )  =  B )
4342mpteq2dva 4095 . . 3  |-  ( ph  ->  ( w  e.  A  |->  ( ( G `  w ) R ( F `  w ) ) )  =  ( w  e.  A  |->  B ) )
4422, 43eqtrd 2210 . 2  |-  ( ph  ->  ( G  oF R F )  =  ( w  e.  A  |->  B ) )
45 fconstmpt 4675 . 2  |-  ( A  X.  { B }
)  =  ( w  e.  A  |->  B )
4644, 45eqtr4di 2228 1  |-  ( ph  ->  ( G  oF R F )  =  ( A  X.  { B } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   A.wral 2455   {csn 3594    |-> cmpt 4066    X. cxp 4626    Fn wfn 5213   -->wf 5214   ` cfv 5218  (class class class)co 5877    oFcof 6083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-setind 4538
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-of 6085
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator