| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caofinvl | Unicode version | ||
| Description: Transfer a left inverse law to the function operation. (Contributed by NM, 22-Oct-2014.) |
| Ref | Expression |
|---|---|
| caofref.1 |
|
| caofref.2 |
|
| caofinv.3 |
|
| caofinv.4 |
|
| caofinv.5 |
|
| caofinvl.6 |
|
| Ref | Expression |
|---|---|
| caofinvl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caofref.1 |
. . . 4
| |
| 2 | caofinv.4 |
. . . . . . . . 9
| |
| 3 | 2 | adantr 276 |
. . . . . . . 8
|
| 4 | caofref.2 |
. . . . . . . . 9
| |
| 5 | 4 | ffvelcdmda 5715 |
. . . . . . . 8
|
| 6 | 3, 5 | ffvelcdmd 5716 |
. . . . . . 7
|
| 7 | eqid 2205 |
. . . . . . 7
| |
| 8 | 6, 7 | fmptd 5734 |
. . . . . 6
|
| 9 | caofinv.5 |
. . . . . . 7
| |
| 10 | 9 | feq1d 5412 |
. . . . . 6
|
| 11 | 8, 10 | mpbird 167 |
. . . . 5
|
| 12 | 11 | ffvelcdmda 5715 |
. . . 4
|
| 13 | 4 | ffvelcdmda 5715 |
. . . 4
|
| 14 | 6 | ralrimiva 2579 |
. . . . . . 7
|
| 15 | 7 | fnmpt 5402 |
. . . . . . 7
|
| 16 | 14, 15 | syl 14 |
. . . . . 6
|
| 17 | 9 | fneq1d 5364 |
. . . . . 6
|
| 18 | 16, 17 | mpbird 167 |
. . . . 5
|
| 19 | dffn5im 5624 |
. . . . 5
| |
| 20 | 18, 19 | syl 14 |
. . . 4
|
| 21 | 4 | feqmptd 5632 |
. . . 4
|
| 22 | 1, 12, 13, 20, 21 | offval2 6174 |
. . 3
|
| 23 | 9 | fveq1d 5578 |
. . . . . . . 8
|
| 24 | 23 | adantr 276 |
. . . . . . 7
|
| 25 | simpr 110 |
. . . . . . . 8
| |
| 26 | 2 | adantr 276 |
. . . . . . . . 9
|
| 27 | 26, 13 | ffvelcdmd 5716 |
. . . . . . . 8
|
| 28 | fveq2 5576 |
. . . . . . . . . 10
| |
| 29 | 28 | fveq2d 5580 |
. . . . . . . . 9
|
| 30 | 29, 7 | fvmptg 5655 |
. . . . . . . 8
|
| 31 | 25, 27, 30 | syl2anc 411 |
. . . . . . 7
|
| 32 | 24, 31 | eqtrd 2238 |
. . . . . 6
|
| 33 | 32 | oveq1d 5959 |
. . . . 5
|
| 34 | fveq2 5576 |
. . . . . . . 8
| |
| 35 | id 19 |
. . . . . . . 8
| |
| 36 | 34, 35 | oveq12d 5962 |
. . . . . . 7
|
| 37 | 36 | eqeq1d 2214 |
. . . . . 6
|
| 38 | caofinvl.6 |
. . . . . . . 8
| |
| 39 | 38 | ralrimiva 2579 |
. . . . . . 7
|
| 40 | 39 | adantr 276 |
. . . . . 6
|
| 41 | 37, 40, 13 | rspcdva 2882 |
. . . . 5
|
| 42 | 33, 41 | eqtrd 2238 |
. . . 4
|
| 43 | 42 | mpteq2dva 4134 |
. . 3
|
| 44 | 22, 43 | eqtrd 2238 |
. 2
|
| 45 | fconstmpt 4722 |
. 2
| |
| 46 | 44, 45 | eqtr4di 2256 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-setind 4585 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-of 6158 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |