ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caofinvl Unicode version

Theorem caofinvl 6083
Description: Transfer a left inverse law to the function operation. (Contributed by NM, 22-Oct-2014.)
Hypotheses
Ref Expression
caofref.1  |-  ( ph  ->  A  e.  V )
caofref.2  |-  ( ph  ->  F : A --> S )
caofinv.3  |-  ( ph  ->  B  e.  W )
caofinv.4  |-  ( ph  ->  N : S --> S )
caofinv.5  |-  ( ph  ->  G  =  ( v  e.  A  |->  ( N `
 ( F `  v ) ) ) )
caofinvl.6  |-  ( (
ph  /\  x  e.  S )  ->  (
( N `  x
) R x )  =  B )
Assertion
Ref Expression
caofinvl  |-  ( ph  ->  ( G  oF R F )  =  ( A  X.  { B } ) )
Distinct variable groups:    x, B    x, F    x, G    ph, x    x, R    x, S    v, A    v, F, x    x, N, v    v, S    ph, v
Allowed substitution hints:    A( x)    B( v)    R( v)    G( v)    V( x, v)    W( x, v)

Proof of Theorem caofinvl
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 caofref.1 . . . 4  |-  ( ph  ->  A  e.  V )
2 caofinv.4 . . . . . . . . 9  |-  ( ph  ->  N : S --> S )
32adantr 274 . . . . . . . 8  |-  ( (
ph  /\  v  e.  A )  ->  N : S --> S )
4 caofref.2 . . . . . . . . 9  |-  ( ph  ->  F : A --> S )
54ffvelrnda 5631 . . . . . . . 8  |-  ( (
ph  /\  v  e.  A )  ->  ( F `  v )  e.  S )
63, 5ffvelrnd 5632 . . . . . . 7  |-  ( (
ph  /\  v  e.  A )  ->  ( N `  ( F `  v ) )  e.  S )
7 eqid 2170 . . . . . . 7  |-  ( v  e.  A  |->  ( N `
 ( F `  v ) ) )  =  ( v  e.  A  |->  ( N `  ( F `  v ) ) )
86, 7fmptd 5650 . . . . . 6  |-  ( ph  ->  ( v  e.  A  |->  ( N `  ( F `  v )
) ) : A --> S )
9 caofinv.5 . . . . . . 7  |-  ( ph  ->  G  =  ( v  e.  A  |->  ( N `
 ( F `  v ) ) ) )
109feq1d 5334 . . . . . 6  |-  ( ph  ->  ( G : A --> S 
<->  ( v  e.  A  |->  ( N `  ( F `  v )
) ) : A --> S ) )
118, 10mpbird 166 . . . . 5  |-  ( ph  ->  G : A --> S )
1211ffvelrnda 5631 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  ( G `  w )  e.  S )
134ffvelrnda 5631 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  ( F `  w )  e.  S )
146ralrimiva 2543 . . . . . . 7  |-  ( ph  ->  A. v  e.  A  ( N `  ( F `
 v ) )  e.  S )
157fnmpt 5324 . . . . . . 7  |-  ( A. v  e.  A  ( N `  ( F `  v ) )  e.  S  ->  ( v  e.  A  |->  ( N `
 ( F `  v ) ) )  Fn  A )
1614, 15syl 14 . . . . . 6  |-  ( ph  ->  ( v  e.  A  |->  ( N `  ( F `  v )
) )  Fn  A
)
179fneq1d 5288 . . . . . 6  |-  ( ph  ->  ( G  Fn  A  <->  ( v  e.  A  |->  ( N `  ( F `
 v ) ) )  Fn  A ) )
1816, 17mpbird 166 . . . . 5  |-  ( ph  ->  G  Fn  A )
19 dffn5im 5542 . . . . 5  |-  ( G  Fn  A  ->  G  =  ( w  e.  A  |->  ( G `  w ) ) )
2018, 19syl 14 . . . 4  |-  ( ph  ->  G  =  ( w  e.  A  |->  ( G `
 w ) ) )
214feqmptd 5549 . . . 4  |-  ( ph  ->  F  =  ( w  e.  A  |->  ( F `
 w ) ) )
221, 12, 13, 20, 21offval2 6076 . . 3  |-  ( ph  ->  ( G  oF R F )  =  ( w  e.  A  |->  ( ( G `  w ) R ( F `  w ) ) ) )
239fveq1d 5498 . . . . . . . 8  |-  ( ph  ->  ( G `  w
)  =  ( ( v  e.  A  |->  ( N `  ( F `
 v ) ) ) `  w ) )
2423adantr 274 . . . . . . 7  |-  ( (
ph  /\  w  e.  A )  ->  ( G `  w )  =  ( ( v  e.  A  |->  ( N `
 ( F `  v ) ) ) `
 w ) )
25 simpr 109 . . . . . . . 8  |-  ( (
ph  /\  w  e.  A )  ->  w  e.  A )
262adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  w  e.  A )  ->  N : S --> S )
2726, 13ffvelrnd 5632 . . . . . . . 8  |-  ( (
ph  /\  w  e.  A )  ->  ( N `  ( F `  w ) )  e.  S )
28 fveq2 5496 . . . . . . . . . 10  |-  ( v  =  w  ->  ( F `  v )  =  ( F `  w ) )
2928fveq2d 5500 . . . . . . . . 9  |-  ( v  =  w  ->  ( N `  ( F `  v ) )  =  ( N `  ( F `  w )
) )
3029, 7fvmptg 5572 . . . . . . . 8  |-  ( ( w  e.  A  /\  ( N `  ( F `
 w ) )  e.  S )  -> 
( ( v  e.  A  |->  ( N `  ( F `  v ) ) ) `  w
)  =  ( N `
 ( F `  w ) ) )
3125, 27, 30syl2anc 409 . . . . . . 7  |-  ( (
ph  /\  w  e.  A )  ->  (
( v  e.  A  |->  ( N `  ( F `  v )
) ) `  w
)  =  ( N `
 ( F `  w ) ) )
3224, 31eqtrd 2203 . . . . . 6  |-  ( (
ph  /\  w  e.  A )  ->  ( G `  w )  =  ( N `  ( F `  w ) ) )
3332oveq1d 5868 . . . . 5  |-  ( (
ph  /\  w  e.  A )  ->  (
( G `  w
) R ( F `
 w ) )  =  ( ( N `
 ( F `  w ) ) R ( F `  w
) ) )
34 fveq2 5496 . . . . . . . 8  |-  ( x  =  ( F `  w )  ->  ( N `  x )  =  ( N `  ( F `  w ) ) )
35 id 19 . . . . . . . 8  |-  ( x  =  ( F `  w )  ->  x  =  ( F `  w ) )
3634, 35oveq12d 5871 . . . . . . 7  |-  ( x  =  ( F `  w )  ->  (
( N `  x
) R x )  =  ( ( N `
 ( F `  w ) ) R ( F `  w
) ) )
3736eqeq1d 2179 . . . . . 6  |-  ( x  =  ( F `  w )  ->  (
( ( N `  x ) R x )  =  B  <->  ( ( N `  ( F `  w ) ) R ( F `  w
) )  =  B ) )
38 caofinvl.6 . . . . . . . 8  |-  ( (
ph  /\  x  e.  S )  ->  (
( N `  x
) R x )  =  B )
3938ralrimiva 2543 . . . . . . 7  |-  ( ph  ->  A. x  e.  S  ( ( N `  x ) R x )  =  B )
4039adantr 274 . . . . . 6  |-  ( (
ph  /\  w  e.  A )  ->  A. x  e.  S  ( ( N `  x ) R x )  =  B )
4137, 40, 13rspcdva 2839 . . . . 5  |-  ( (
ph  /\  w  e.  A )  ->  (
( N `  ( F `  w )
) R ( F `
 w ) )  =  B )
4233, 41eqtrd 2203 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  (
( G `  w
) R ( F `
 w ) )  =  B )
4342mpteq2dva 4079 . . 3  |-  ( ph  ->  ( w  e.  A  |->  ( ( G `  w ) R ( F `  w ) ) )  =  ( w  e.  A  |->  B ) )
4422, 43eqtrd 2203 . 2  |-  ( ph  ->  ( G  oF R F )  =  ( w  e.  A  |->  B ) )
45 fconstmpt 4658 . 2  |-  ( A  X.  { B }
)  =  ( w  e.  A  |->  B )
4644, 45eqtr4di 2221 1  |-  ( ph  ->  ( G  oF R F )  =  ( A  X.  { B } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   A.wral 2448   {csn 3583    |-> cmpt 4050    X. cxp 4609    Fn wfn 5193   -->wf 5194   ` cfv 5198  (class class class)co 5853    oFcof 6059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-of 6061
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator