| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caofinvl | Unicode version | ||
| Description: Transfer a left inverse law to the function operation. (Contributed by NM, 22-Oct-2014.) |
| Ref | Expression |
|---|---|
| caofref.1 |
|
| caofref.2 |
|
| caofinv.3 |
|
| caofinv.4 |
|
| caofinv.5 |
|
| caofinvl.6 |
|
| Ref | Expression |
|---|---|
| caofinvl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caofref.1 |
. . . 4
| |
| 2 | caofinv.4 |
. . . . . . . . 9
| |
| 3 | 2 | adantr 276 |
. . . . . . . 8
|
| 4 | caofref.2 |
. . . . . . . . 9
| |
| 5 | 4 | ffvelcdmda 5700 |
. . . . . . . 8
|
| 6 | 3, 5 | ffvelcdmd 5701 |
. . . . . . 7
|
| 7 | eqid 2196 |
. . . . . . 7
| |
| 8 | 6, 7 | fmptd 5719 |
. . . . . 6
|
| 9 | caofinv.5 |
. . . . . . 7
| |
| 10 | 9 | feq1d 5397 |
. . . . . 6
|
| 11 | 8, 10 | mpbird 167 |
. . . . 5
|
| 12 | 11 | ffvelcdmda 5700 |
. . . 4
|
| 13 | 4 | ffvelcdmda 5700 |
. . . 4
|
| 14 | 6 | ralrimiva 2570 |
. . . . . . 7
|
| 15 | 7 | fnmpt 5387 |
. . . . . . 7
|
| 16 | 14, 15 | syl 14 |
. . . . . 6
|
| 17 | 9 | fneq1d 5349 |
. . . . . 6
|
| 18 | 16, 17 | mpbird 167 |
. . . . 5
|
| 19 | dffn5im 5609 |
. . . . 5
| |
| 20 | 18, 19 | syl 14 |
. . . 4
|
| 21 | 4 | feqmptd 5617 |
. . . 4
|
| 22 | 1, 12, 13, 20, 21 | offval2 6155 |
. . 3
|
| 23 | 9 | fveq1d 5563 |
. . . . . . . 8
|
| 24 | 23 | adantr 276 |
. . . . . . 7
|
| 25 | simpr 110 |
. . . . . . . 8
| |
| 26 | 2 | adantr 276 |
. . . . . . . . 9
|
| 27 | 26, 13 | ffvelcdmd 5701 |
. . . . . . . 8
|
| 28 | fveq2 5561 |
. . . . . . . . . 10
| |
| 29 | 28 | fveq2d 5565 |
. . . . . . . . 9
|
| 30 | 29, 7 | fvmptg 5640 |
. . . . . . . 8
|
| 31 | 25, 27, 30 | syl2anc 411 |
. . . . . . 7
|
| 32 | 24, 31 | eqtrd 2229 |
. . . . . 6
|
| 33 | 32 | oveq1d 5940 |
. . . . 5
|
| 34 | fveq2 5561 |
. . . . . . . 8
| |
| 35 | id 19 |
. . . . . . . 8
| |
| 36 | 34, 35 | oveq12d 5943 |
. . . . . . 7
|
| 37 | 36 | eqeq1d 2205 |
. . . . . 6
|
| 38 | caofinvl.6 |
. . . . . . . 8
| |
| 39 | 38 | ralrimiva 2570 |
. . . . . . 7
|
| 40 | 39 | adantr 276 |
. . . . . 6
|
| 41 | 37, 40, 13 | rspcdva 2873 |
. . . . 5
|
| 42 | 33, 41 | eqtrd 2229 |
. . . 4
|
| 43 | 42 | mpteq2dva 4124 |
. . 3
|
| 44 | 22, 43 | eqtrd 2229 |
. 2
|
| 45 | fconstmpt 4711 |
. 2
| |
| 46 | 44, 45 | eqtr4di 2247 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-setind 4574 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-of 6139 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |