Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > caofinvl | Unicode version |
Description: Transfer a left inverse law to the function operation. (Contributed by NM, 22-Oct-2014.) |
Ref | Expression |
---|---|
caofref.1 | |
caofref.2 | |
caofinv.3 | |
caofinv.4 | |
caofinv.5 | |
caofinvl.6 |
Ref | Expression |
---|---|
caofinvl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caofref.1 | . . . 4 | |
2 | caofinv.4 | . . . . . . . . 9 | |
3 | 2 | adantr 274 | . . . . . . . 8 |
4 | caofref.2 | . . . . . . . . 9 | |
5 | 4 | ffvelrnda 5620 | . . . . . . . 8 |
6 | 3, 5 | ffvelrnd 5621 | . . . . . . 7 |
7 | eqid 2165 | . . . . . . 7 | |
8 | 6, 7 | fmptd 5639 | . . . . . 6 |
9 | caofinv.5 | . . . . . . 7 | |
10 | 9 | feq1d 5324 | . . . . . 6 |
11 | 8, 10 | mpbird 166 | . . . . 5 |
12 | 11 | ffvelrnda 5620 | . . . 4 |
13 | 4 | ffvelrnda 5620 | . . . 4 |
14 | 6 | ralrimiva 2539 | . . . . . . 7 |
15 | 7 | fnmpt 5314 | . . . . . . 7 |
16 | 14, 15 | syl 14 | . . . . . 6 |
17 | 9 | fneq1d 5278 | . . . . . 6 |
18 | 16, 17 | mpbird 166 | . . . . 5 |
19 | dffn5im 5532 | . . . . 5 | |
20 | 18, 19 | syl 14 | . . . 4 |
21 | 4 | feqmptd 5539 | . . . 4 |
22 | 1, 12, 13, 20, 21 | offval2 6065 | . . 3 |
23 | 9 | fveq1d 5488 | . . . . . . . 8 |
24 | 23 | adantr 274 | . . . . . . 7 |
25 | simpr 109 | . . . . . . . 8 | |
26 | 2 | adantr 274 | . . . . . . . . 9 |
27 | 26, 13 | ffvelrnd 5621 | . . . . . . . 8 |
28 | fveq2 5486 | . . . . . . . . . 10 | |
29 | 28 | fveq2d 5490 | . . . . . . . . 9 |
30 | 29, 7 | fvmptg 5562 | . . . . . . . 8 |
31 | 25, 27, 30 | syl2anc 409 | . . . . . . 7 |
32 | 24, 31 | eqtrd 2198 | . . . . . 6 |
33 | 32 | oveq1d 5857 | . . . . 5 |
34 | fveq2 5486 | . . . . . . . 8 | |
35 | id 19 | . . . . . . . 8 | |
36 | 34, 35 | oveq12d 5860 | . . . . . . 7 |
37 | 36 | eqeq1d 2174 | . . . . . 6 |
38 | caofinvl.6 | . . . . . . . 8 | |
39 | 38 | ralrimiva 2539 | . . . . . . 7 |
40 | 39 | adantr 274 | . . . . . 6 |
41 | 37, 40, 13 | rspcdva 2835 | . . . . 5 |
42 | 33, 41 | eqtrd 2198 | . . . 4 |
43 | 42 | mpteq2dva 4072 | . . 3 |
44 | 22, 43 | eqtrd 2198 | . 2 |
45 | fconstmpt 4651 | . 2 | |
46 | 44, 45 | eqtr4di 2217 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 wral 2444 csn 3576 cmpt 4043 cxp 4602 wfn 5183 wf 5184 cfv 5188 (class class class)co 5842 cof 6048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-of 6050 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |