Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > caofinvl | Unicode version |
Description: Transfer a left inverse law to the function operation. (Contributed by NM, 22-Oct-2014.) |
Ref | Expression |
---|---|
caofref.1 | |
caofref.2 | |
caofinv.3 | |
caofinv.4 | |
caofinv.5 | |
caofinvl.6 |
Ref | Expression |
---|---|
caofinvl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caofref.1 | . . . 4 | |
2 | caofinv.4 | . . . . . . . . 9 | |
3 | 2 | adantr 274 | . . . . . . . 8 |
4 | caofref.2 | . . . . . . . . 9 | |
5 | 4 | ffvelrnda 5631 | . . . . . . . 8 |
6 | 3, 5 | ffvelrnd 5632 | . . . . . . 7 |
7 | eqid 2170 | . . . . . . 7 | |
8 | 6, 7 | fmptd 5650 | . . . . . 6 |
9 | caofinv.5 | . . . . . . 7 | |
10 | 9 | feq1d 5334 | . . . . . 6 |
11 | 8, 10 | mpbird 166 | . . . . 5 |
12 | 11 | ffvelrnda 5631 | . . . 4 |
13 | 4 | ffvelrnda 5631 | . . . 4 |
14 | 6 | ralrimiva 2543 | . . . . . . 7 |
15 | 7 | fnmpt 5324 | . . . . . . 7 |
16 | 14, 15 | syl 14 | . . . . . 6 |
17 | 9 | fneq1d 5288 | . . . . . 6 |
18 | 16, 17 | mpbird 166 | . . . . 5 |
19 | dffn5im 5542 | . . . . 5 | |
20 | 18, 19 | syl 14 | . . . 4 |
21 | 4 | feqmptd 5549 | . . . 4 |
22 | 1, 12, 13, 20, 21 | offval2 6076 | . . 3 |
23 | 9 | fveq1d 5498 | . . . . . . . 8 |
24 | 23 | adantr 274 | . . . . . . 7 |
25 | simpr 109 | . . . . . . . 8 | |
26 | 2 | adantr 274 | . . . . . . . . 9 |
27 | 26, 13 | ffvelrnd 5632 | . . . . . . . 8 |
28 | fveq2 5496 | . . . . . . . . . 10 | |
29 | 28 | fveq2d 5500 | . . . . . . . . 9 |
30 | 29, 7 | fvmptg 5572 | . . . . . . . 8 |
31 | 25, 27, 30 | syl2anc 409 | . . . . . . 7 |
32 | 24, 31 | eqtrd 2203 | . . . . . 6 |
33 | 32 | oveq1d 5868 | . . . . 5 |
34 | fveq2 5496 | . . . . . . . 8 | |
35 | id 19 | . . . . . . . 8 | |
36 | 34, 35 | oveq12d 5871 | . . . . . . 7 |
37 | 36 | eqeq1d 2179 | . . . . . 6 |
38 | caofinvl.6 | . . . . . . . 8 | |
39 | 38 | ralrimiva 2543 | . . . . . . 7 |
40 | 39 | adantr 274 | . . . . . 6 |
41 | 37, 40, 13 | rspcdva 2839 | . . . . 5 |
42 | 33, 41 | eqtrd 2203 | . . . 4 |
43 | 42 | mpteq2dva 4079 | . . 3 |
44 | 22, 43 | eqtrd 2203 | . 2 |
45 | fconstmpt 4658 | . 2 | |
46 | 44, 45 | eqtr4di 2221 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 wral 2448 csn 3583 cmpt 4050 cxp 4609 wfn 5193 wf 5194 cfv 5198 (class class class)co 5853 cof 6059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-of 6061 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |