ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpassg Unicode version

Theorem genpassg 7639
Description: Associativity of an operation on reals. (Contributed by Jim Kingdon, 11-Dec-2019.)
Hypotheses
Ref Expression
genpelvl.1  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v
)  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y G z ) ) } >. )
genpelvl.2  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
genpassg.4  |-  dom  F  =  ( P.  X.  P. )
genpassg.5  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f F g )  e.  P. )
genpassg.6  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  (
( f G g ) G h )  =  ( f G ( g G h ) ) )
Assertion
Ref Expression
genpassg  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( A F B ) F C )  =  ( A F ( B F C ) ) )
Distinct variable groups:    x, y, z, f, g, h, w, v, A    x, B, y, z, f, g, h, w, v    x, G, y, z, f, g, h, w, v    f, F, g    C, f, g, h, v, w, x, y, z    h, F, v, w, x, y, z

Proof of Theorem genpassg
StepHypRef Expression
1 genpelvl.1 . . 3  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v
)  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y G z ) ) } >. )
2 genpelvl.2 . . 3  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
3 genpassg.4 . . 3  |-  dom  F  =  ( P.  X.  P. )
4 genpassg.5 . . 3  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f F g )  e.  P. )
5 genpassg.6 . . 3  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  (
( f G g ) G h )  =  ( f G ( g G h ) ) )
61, 2, 3, 4, 5genpassl 7637 . 2  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( 1st `  ( ( A F B ) F C ) )  =  ( 1st `  ( A F ( B F C ) ) ) )
71, 2, 3, 4, 5genpassu 7638 . 2  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( 2nd `  ( ( A F B ) F C ) )  =  ( 2nd `  ( A F ( B F C ) ) ) )
84caovcl 6101 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A F B )  e.  P. )
94caovcl 6101 . . . . 5  |-  ( ( ( A F B )  e.  P.  /\  C  e.  P. )  ->  ( ( A F B ) F C )  e.  P. )
108, 9sylan 283 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  C  e.  P. )  ->  ( ( A F B ) F C )  e.  P. )
11103impa 1197 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( A F B ) F C )  e.  P. )
124caovcl 6101 . . . . 5  |-  ( ( B  e.  P.  /\  C  e.  P. )  ->  ( B F C )  e.  P. )
134caovcl 6101 . . . . 5  |-  ( ( A  e.  P.  /\  ( B F C )  e.  P. )  -> 
( A F ( B F C ) )  e.  P. )
1412, 13sylan2 286 . . . 4  |-  ( ( A  e.  P.  /\  ( B  e.  P.  /\  C  e.  P. )
)  ->  ( A F ( B F C ) )  e. 
P. )
15143impb 1202 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A F ( B F C ) )  e. 
P. )
16 preqlu 7585 . . 3  |-  ( ( ( ( A F B ) F C )  e.  P.  /\  ( A F ( B F C ) )  e.  P. )  -> 
( ( ( A F B ) F C )  =  ( A F ( B F C ) )  <-> 
( ( 1st `  (
( A F B ) F C ) )  =  ( 1st `  ( A F ( B F C ) ) )  /\  ( 2nd `  ( ( A F B ) F C ) )  =  ( 2nd `  ( A F ( B F C ) ) ) ) ) )
1711, 15, 16syl2anc 411 . 2  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( ( A F B ) F C )  =  ( A F ( B F C ) )  <->  ( ( 1st `  ( ( A F B ) F C ) )  =  ( 1st `  ( A F ( B F C ) ) )  /\  ( 2nd `  (
( A F B ) F C ) )  =  ( 2nd `  ( A F ( B F C ) ) ) ) ) )
186, 7, 17mpbir2and 947 1  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( A F B ) F C )  =  ( A F ( B F C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176   E.wrex 2485   {crab 2488   <.cop 3636    X. cxp 4673   dom cdm 4675   ` cfv 5271  (class class class)co 5944    e. cmpo 5946   1stc1st 6224   2ndc2nd 6225   Q.cnq 7393   P.cnp 7404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-qs 6626  df-ni 7417  df-nqqs 7461  df-inp 7579
This theorem is referenced by:  addassprg  7692  mulassprg  7694
  Copyright terms: Public domain W3C validator