ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpassg Unicode version

Theorem genpassg 7610
Description: Associativity of an operation on reals. (Contributed by Jim Kingdon, 11-Dec-2019.)
Hypotheses
Ref Expression
genpelvl.1  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v
)  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y G z ) ) } >. )
genpelvl.2  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
genpassg.4  |-  dom  F  =  ( P.  X.  P. )
genpassg.5  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f F g )  e.  P. )
genpassg.6  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  (
( f G g ) G h )  =  ( f G ( g G h ) ) )
Assertion
Ref Expression
genpassg  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( A F B ) F C )  =  ( A F ( B F C ) ) )
Distinct variable groups:    x, y, z, f, g, h, w, v, A    x, B, y, z, f, g, h, w, v    x, G, y, z, f, g, h, w, v    f, F, g    C, f, g, h, v, w, x, y, z    h, F, v, w, x, y, z

Proof of Theorem genpassg
StepHypRef Expression
1 genpelvl.1 . . 3  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v
)  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y G z ) ) } >. )
2 genpelvl.2 . . 3  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
3 genpassg.4 . . 3  |-  dom  F  =  ( P.  X.  P. )
4 genpassg.5 . . 3  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f F g )  e.  P. )
5 genpassg.6 . . 3  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  (
( f G g ) G h )  =  ( f G ( g G h ) ) )
61, 2, 3, 4, 5genpassl 7608 . 2  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( 1st `  ( ( A F B ) F C ) )  =  ( 1st `  ( A F ( B F C ) ) ) )
71, 2, 3, 4, 5genpassu 7609 . 2  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( 2nd `  ( ( A F B ) F C ) )  =  ( 2nd `  ( A F ( B F C ) ) ) )
84caovcl 6082 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A F B )  e.  P. )
94caovcl 6082 . . . . 5  |-  ( ( ( A F B )  e.  P.  /\  C  e.  P. )  ->  ( ( A F B ) F C )  e.  P. )
108, 9sylan 283 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  C  e.  P. )  ->  ( ( A F B ) F C )  e.  P. )
11103impa 1196 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( A F B ) F C )  e.  P. )
124caovcl 6082 . . . . 5  |-  ( ( B  e.  P.  /\  C  e.  P. )  ->  ( B F C )  e.  P. )
134caovcl 6082 . . . . 5  |-  ( ( A  e.  P.  /\  ( B F C )  e.  P. )  -> 
( A F ( B F C ) )  e.  P. )
1412, 13sylan2 286 . . . 4  |-  ( ( A  e.  P.  /\  ( B  e.  P.  /\  C  e.  P. )
)  ->  ( A F ( B F C ) )  e. 
P. )
15143impb 1201 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A F ( B F C ) )  e. 
P. )
16 preqlu 7556 . . 3  |-  ( ( ( ( A F B ) F C )  e.  P.  /\  ( A F ( B F C ) )  e.  P. )  -> 
( ( ( A F B ) F C )  =  ( A F ( B F C ) )  <-> 
( ( 1st `  (
( A F B ) F C ) )  =  ( 1st `  ( A F ( B F C ) ) )  /\  ( 2nd `  ( ( A F B ) F C ) )  =  ( 2nd `  ( A F ( B F C ) ) ) ) ) )
1711, 15, 16syl2anc 411 . 2  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( ( A F B ) F C )  =  ( A F ( B F C ) )  <->  ( ( 1st `  ( ( A F B ) F C ) )  =  ( 1st `  ( A F ( B F C ) ) )  /\  ( 2nd `  (
( A F B ) F C ) )  =  ( 2nd `  ( A F ( B F C ) ) ) ) ) )
186, 7, 17mpbir2and 946 1  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( A F B ) F C )  =  ( A F ( B F C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   E.wrex 2476   {crab 2479   <.cop 3626    X. cxp 4662   dom cdm 4664   ` cfv 5259  (class class class)co 5925    e. cmpo 5927   1stc1st 6205   2ndc2nd 6206   Q.cnq 7364   P.cnp 7375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-qs 6607  df-ni 7388  df-nqqs 7432  df-inp 7550
This theorem is referenced by:  addassprg  7663  mulassprg  7665
  Copyright terms: Public domain W3C validator