ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpassg Unicode version

Theorem genpassg 7588
Description: Associativity of an operation on reals. (Contributed by Jim Kingdon, 11-Dec-2019.)
Hypotheses
Ref Expression
genpelvl.1  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v
)  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y G z ) ) } >. )
genpelvl.2  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
genpassg.4  |-  dom  F  =  ( P.  X.  P. )
genpassg.5  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f F g )  e.  P. )
genpassg.6  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  (
( f G g ) G h )  =  ( f G ( g G h ) ) )
Assertion
Ref Expression
genpassg  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( A F B ) F C )  =  ( A F ( B F C ) ) )
Distinct variable groups:    x, y, z, f, g, h, w, v, A    x, B, y, z, f, g, h, w, v    x, G, y, z, f, g, h, w, v    f, F, g    C, f, g, h, v, w, x, y, z    h, F, v, w, x, y, z

Proof of Theorem genpassg
StepHypRef Expression
1 genpelvl.1 . . 3  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v
)  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y G z ) ) } >. )
2 genpelvl.2 . . 3  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
3 genpassg.4 . . 3  |-  dom  F  =  ( P.  X.  P. )
4 genpassg.5 . . 3  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f F g )  e.  P. )
5 genpassg.6 . . 3  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  (
( f G g ) G h )  =  ( f G ( g G h ) ) )
61, 2, 3, 4, 5genpassl 7586 . 2  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( 1st `  ( ( A F B ) F C ) )  =  ( 1st `  ( A F ( B F C ) ) ) )
71, 2, 3, 4, 5genpassu 7587 . 2  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( 2nd `  ( ( A F B ) F C ) )  =  ( 2nd `  ( A F ( B F C ) ) ) )
84caovcl 6075 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A F B )  e.  P. )
94caovcl 6075 . . . . 5  |-  ( ( ( A F B )  e.  P.  /\  C  e.  P. )  ->  ( ( A F B ) F C )  e.  P. )
108, 9sylan 283 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  C  e.  P. )  ->  ( ( A F B ) F C )  e.  P. )
11103impa 1196 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( A F B ) F C )  e.  P. )
124caovcl 6075 . . . . 5  |-  ( ( B  e.  P.  /\  C  e.  P. )  ->  ( B F C )  e.  P. )
134caovcl 6075 . . . . 5  |-  ( ( A  e.  P.  /\  ( B F C )  e.  P. )  -> 
( A F ( B F C ) )  e.  P. )
1412, 13sylan2 286 . . . 4  |-  ( ( A  e.  P.  /\  ( B  e.  P.  /\  C  e.  P. )
)  ->  ( A F ( B F C ) )  e. 
P. )
15143impb 1201 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A F ( B F C ) )  e. 
P. )
16 preqlu 7534 . . 3  |-  ( ( ( ( A F B ) F C )  e.  P.  /\  ( A F ( B F C ) )  e.  P. )  -> 
( ( ( A F B ) F C )  =  ( A F ( B F C ) )  <-> 
( ( 1st `  (
( A F B ) F C ) )  =  ( 1st `  ( A F ( B F C ) ) )  /\  ( 2nd `  ( ( A F B ) F C ) )  =  ( 2nd `  ( A F ( B F C ) ) ) ) ) )
1711, 15, 16syl2anc 411 . 2  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( ( A F B ) F C )  =  ( A F ( B F C ) )  <->  ( ( 1st `  ( ( A F B ) F C ) )  =  ( 1st `  ( A F ( B F C ) ) )  /\  ( 2nd `  (
( A F B ) F C ) )  =  ( 2nd `  ( A F ( B F C ) ) ) ) ) )
186, 7, 17mpbir2and 946 1  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( A F B ) F C )  =  ( A F ( B F C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   E.wrex 2473   {crab 2476   <.cop 3622    X. cxp 4658   dom cdm 4660   ` cfv 5255  (class class class)co 5919    e. cmpo 5921   1stc1st 6193   2ndc2nd 6194   Q.cnq 7342   P.cnp 7353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-qs 6595  df-ni 7366  df-nqqs 7410  df-inp 7528
This theorem is referenced by:  addassprg  7641  mulassprg  7643
  Copyright terms: Public domain W3C validator