ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqovex Unicode version

Theorem iseqovex 10391
Description: Closure of a function used in proving sequence builder theorems. This can be thought of as a lemma for the small number of sequence builder theorems which need it. (Contributed by Jim Kingdon, 31-May-2020.)
Hypotheses
Ref Expression
iseqovex.f  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
iseqovex.pl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
Assertion
Ref Expression
iseqovex  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  (
x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  e.  S )
Distinct variable groups:    w, F, x, y, z    w,  .+ , x, y, z    w, S, x, y, z    ph, w, x, y, z    w, M, x, z
Allowed substitution hint:    M( y)

Proof of Theorem iseqovex
StepHypRef Expression
1 eqidd 2166 . . 3  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  (
z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) )  =  ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) )
2 simprr 522 . . . 4  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= `  M )  /\  y  e.  S ) )  /\  ( z  =  x  /\  w  =  y ) )  ->  w  =  y )
3 simprl 521 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= `  M )  /\  y  e.  S ) )  /\  ( z  =  x  /\  w  =  y ) )  ->  z  =  x )
43oveq1d 5857 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= `  M )  /\  y  e.  S ) )  /\  ( z  =  x  /\  w  =  y ) )  ->  (
z  +  1 )  =  ( x  + 
1 ) )
54fveq2d 5490 . . . 4  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= `  M )  /\  y  e.  S ) )  /\  ( z  =  x  /\  w  =  y ) )  ->  ( F `  ( z  +  1 ) )  =  ( F `  ( x  +  1
) ) )
62, 5oveq12d 5860 . . 3  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= `  M )  /\  y  e.  S ) )  /\  ( z  =  x  /\  w  =  y ) )  ->  (
w  .+  ( F `  ( z  +  1 ) ) )  =  ( y  .+  ( F `  ( x  +  1 ) ) ) )
7 simprl 521 . . 3  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  x  e.  ( ZZ>= `  M )
)
8 simprr 522 . . 3  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  y  e.  S )
9 iseqovex.pl . . . . . 6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
109caovclg 5994 . . . . 5  |-  ( (
ph  /\  ( z  e.  S  /\  w  e.  S ) )  -> 
( z  .+  w
)  e.  S )
1110adantlr 469 . . . 4  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= `  M )  /\  y  e.  S ) )  /\  ( z  e.  S  /\  w  e.  S
) )  ->  (
z  .+  w )  e.  S )
12 fveq2 5486 . . . . . 6  |-  ( z  =  ( x  + 
1 )  ->  ( F `  z )  =  ( F `  ( x  +  1
) ) )
1312eleq1d 2235 . . . . 5  |-  ( z  =  ( x  + 
1 )  ->  (
( F `  z
)  e.  S  <->  ( F `  ( x  +  1 ) )  e.  S
) )
14 iseqovex.f . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
1514ralrimiva 2539 . . . . . . 7  |-  ( ph  ->  A. x  e.  (
ZZ>= `  M ) ( F `  x )  e.  S )
16 fveq2 5486 . . . . . . . . 9  |-  ( x  =  z  ->  ( F `  x )  =  ( F `  z ) )
1716eleq1d 2235 . . . . . . . 8  |-  ( x  =  z  ->  (
( F `  x
)  e.  S  <->  ( F `  z )  e.  S
) )
1817cbvralv 2692 . . . . . . 7  |-  ( A. x  e.  ( ZZ>= `  M ) ( F `
 x )  e.  S  <->  A. z  e.  (
ZZ>= `  M ) ( F `  z )  e.  S )
1915, 18sylib 121 . . . . . 6  |-  ( ph  ->  A. z  e.  (
ZZ>= `  M ) ( F `  z )  e.  S )
2019adantr 274 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  A. z  e.  ( ZZ>= `  M )
( F `  z
)  e.  S )
21 peano2uz 9521 . . . . . 6  |-  ( x  e.  ( ZZ>= `  M
)  ->  ( x  +  1 )  e.  ( ZZ>= `  M )
)
227, 21syl 14 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  (
x  +  1 )  e.  ( ZZ>= `  M
) )
2313, 20, 22rspcdva 2835 . . . 4  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  ( F `  ( x  +  1 ) )  e.  S )
2411, 8, 23caovcld 5995 . . 3  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  (
y  .+  ( F `  ( x  +  1 ) ) )  e.  S )
251, 6, 7, 8, 24ovmpod 5969 . 2  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  (
x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  =  ( y  .+  ( F `  ( x  +  1 ) ) ) )
2625, 24eqeltrd 2243 1  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  (
x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   A.wral 2444   ` cfv 5188  (class class class)co 5842    e. cmpo 5844   1c1 7754    + caddc 7756   ZZ>=cuz 9466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467
This theorem is referenced by:  seq3val  10393  seq3-1  10395  seq3p1  10397
  Copyright terms: Public domain W3C validator