ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqovex Unicode version

Theorem iseqovex 10359
Description: Closure of a function used in proving sequence builder theorems. This can be thought of as a lemma for the small number of sequence builder theorems which need it. (Contributed by Jim Kingdon, 31-May-2020.)
Hypotheses
Ref Expression
iseqovex.f  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
iseqovex.pl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
Assertion
Ref Expression
iseqovex  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  (
x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  e.  S )
Distinct variable groups:    w, F, x, y, z    w,  .+ , x, y, z    w, S, x, y, z    ph, w, x, y, z    w, M, x, z
Allowed substitution hint:    M( y)

Proof of Theorem iseqovex
StepHypRef Expression
1 eqidd 2158 . . 3  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  (
z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) )  =  ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) )
2 simprr 522 . . . 4  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= `  M )  /\  y  e.  S ) )  /\  ( z  =  x  /\  w  =  y ) )  ->  w  =  y )
3 simprl 521 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= `  M )  /\  y  e.  S ) )  /\  ( z  =  x  /\  w  =  y ) )  ->  z  =  x )
43oveq1d 5840 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= `  M )  /\  y  e.  S ) )  /\  ( z  =  x  /\  w  =  y ) )  ->  (
z  +  1 )  =  ( x  + 
1 ) )
54fveq2d 5473 . . . 4  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= `  M )  /\  y  e.  S ) )  /\  ( z  =  x  /\  w  =  y ) )  ->  ( F `  ( z  +  1 ) )  =  ( F `  ( x  +  1
) ) )
62, 5oveq12d 5843 . . 3  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= `  M )  /\  y  e.  S ) )  /\  ( z  =  x  /\  w  =  y ) )  ->  (
w  .+  ( F `  ( z  +  1 ) ) )  =  ( y  .+  ( F `  ( x  +  1 ) ) ) )
7 simprl 521 . . 3  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  x  e.  ( ZZ>= `  M )
)
8 simprr 522 . . 3  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  y  e.  S )
9 iseqovex.pl . . . . . 6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
109caovclg 5974 . . . . 5  |-  ( (
ph  /\  ( z  e.  S  /\  w  e.  S ) )  -> 
( z  .+  w
)  e.  S )
1110adantlr 469 . . . 4  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= `  M )  /\  y  e.  S ) )  /\  ( z  e.  S  /\  w  e.  S
) )  ->  (
z  .+  w )  e.  S )
12 fveq2 5469 . . . . . 6  |-  ( z  =  ( x  + 
1 )  ->  ( F `  z )  =  ( F `  ( x  +  1
) ) )
1312eleq1d 2226 . . . . 5  |-  ( z  =  ( x  + 
1 )  ->  (
( F `  z
)  e.  S  <->  ( F `  ( x  +  1 ) )  e.  S
) )
14 iseqovex.f . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
1514ralrimiva 2530 . . . . . . 7  |-  ( ph  ->  A. x  e.  (
ZZ>= `  M ) ( F `  x )  e.  S )
16 fveq2 5469 . . . . . . . . 9  |-  ( x  =  z  ->  ( F `  x )  =  ( F `  z ) )
1716eleq1d 2226 . . . . . . . 8  |-  ( x  =  z  ->  (
( F `  x
)  e.  S  <->  ( F `  z )  e.  S
) )
1817cbvralv 2680 . . . . . . 7  |-  ( A. x  e.  ( ZZ>= `  M ) ( F `
 x )  e.  S  <->  A. z  e.  (
ZZ>= `  M ) ( F `  z )  e.  S )
1915, 18sylib 121 . . . . . 6  |-  ( ph  ->  A. z  e.  (
ZZ>= `  M ) ( F `  z )  e.  S )
2019adantr 274 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  A. z  e.  ( ZZ>= `  M )
( F `  z
)  e.  S )
21 peano2uz 9495 . . . . . 6  |-  ( x  e.  ( ZZ>= `  M
)  ->  ( x  +  1 )  e.  ( ZZ>= `  M )
)
227, 21syl 14 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  (
x  +  1 )  e.  ( ZZ>= `  M
) )
2313, 20, 22rspcdva 2821 . . . 4  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  ( F `  ( x  +  1 ) )  e.  S )
2411, 8, 23caovcld 5975 . . 3  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  (
y  .+  ( F `  ( x  +  1 ) ) )  e.  S )
251, 6, 7, 8, 24ovmpod 5949 . 2  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  (
x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  =  ( y  .+  ( F `  ( x  +  1 ) ) ) )
2625, 24eqeltrd 2234 1  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  (
x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1335    e. wcel 2128   A.wral 2435   ` cfv 5171  (class class class)co 5825    e. cmpo 5827   1c1 7734    + caddc 7736   ZZ>=cuz 9440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4083  ax-pow 4136  ax-pr 4170  ax-un 4394  ax-setind 4497  ax-cnex 7824  ax-resscn 7825  ax-1cn 7826  ax-1re 7827  ax-icn 7828  ax-addcl 7829  ax-addrcl 7830  ax-mulcl 7831  ax-addcom 7833  ax-addass 7835  ax-distr 7837  ax-i2m1 7838  ax-0lt1 7839  ax-0id 7841  ax-rnegex 7842  ax-cnre 7844  ax-pre-ltirr 7845  ax-pre-ltwlin 7846  ax-pre-lttrn 7847  ax-pre-ltadd 7849
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3774  df-int 3809  df-br 3967  df-opab 4027  df-mpt 4028  df-id 4254  df-xp 4593  df-rel 4594  df-cnv 4595  df-co 4596  df-dm 4597  df-rn 4598  df-res 4599  df-ima 4600  df-iota 5136  df-fun 5173  df-fn 5174  df-f 5175  df-fv 5179  df-riota 5781  df-ov 5828  df-oprab 5829  df-mpo 5830  df-pnf 7915  df-mnf 7916  df-xr 7917  df-ltxr 7918  df-le 7919  df-sub 8049  df-neg 8050  df-inn 8835  df-n0 9092  df-z 9169  df-uz 9441
This theorem is referenced by:  seq3val  10361  seq3-1  10363  seq3p1  10365
  Copyright terms: Public domain W3C validator