ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3val Unicode version

Theorem seq3val 10460
Description: Value of the sequence builder function. This helps expand the definition although there should be little need for it once we have proved seqf 10463, seq3-1 10462 and seq3p1 10464, as further development can be done in terms of those. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 4-Nov-2022.)
Hypotheses
Ref Expression
seq3val.m  |-  ( ph  ->  M  e.  ZZ )
seq3val.r  |-  R  = frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. M , 
( F `  M
) >. )
seq3val.f  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
seq3val.pl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
Assertion
Ref Expression
seq3val  |-  ( ph  ->  seq M (  .+  ,  F )  =  ran  R )
Distinct variable groups:    x,  .+ , y, w, z    x, F, y, w, z    x, M, y, w, z    x, R, y, w, z    x, S, y, w, z    ph, x, y, w, z

Proof of Theorem seq3val
Dummy variables  a  b  k  c  n  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-seqfrec 10448 . 2  |-  seq M
(  .+  ,  F
)  =  ran frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )
2 seq3val.m . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
3 fveq2 5517 . . . . . . . 8  |-  ( x  =  M  ->  ( F `  x )  =  ( F `  M ) )
43eleq1d 2246 . . . . . . 7  |-  ( x  =  M  ->  (
( F `  x
)  e.  S  <->  ( F `  M )  e.  S
) )
5 seq3val.f . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
65ralrimiva 2550 . . . . . . 7  |-  ( ph  ->  A. x  e.  (
ZZ>= `  M ) ( F `  x )  e.  S )
7 uzid 9544 . . . . . . . 8  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
82, 7syl 14 . . . . . . 7  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
94, 6, 8rspcdva 2848 . . . . . 6  |-  ( ph  ->  ( F `  M
)  e.  S )
10 ssv 3179 . . . . . . 7  |-  S  C_  _V
1110a1i 9 . . . . . 6  |-  ( ph  ->  S  C_  _V )
12 seq3val.pl . . . . . . 7  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
135, 12iseqovex 10458 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  (
x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  e.  S )
14 seq3val.r . . . . . 6  |-  R  = frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. M , 
( F `  M
) >. )
152, 9, 11, 13, 14frecuzrdgrclt 10417 . . . . 5  |-  ( ph  ->  R : om --> ( (
ZZ>= `  M )  X.  S ) )
16 ffn 5367 . . . . 5  |-  ( R : om --> ( (
ZZ>= `  M )  X.  S )  ->  R  Fn  om )
1715, 16syl 14 . . . 4  |-  ( ph  ->  R  Fn  om )
18 1st2nd2 6178 . . . . . . . . . . . 12  |-  ( u  e.  ( ( ZZ>= `  M )  X.  S
)  ->  u  =  <. ( 1st `  u
) ,  ( 2nd `  u ) >. )
1918adantl 277 . . . . . . . . . . 11  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  S ) )  ->  u  =  <. ( 1st `  u
) ,  ( 2nd `  u ) >. )
2019fveq2d 5521 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  S ) )  ->  ( (
x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) `  u
)  =  ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) `  <. ( 1st `  u ) ,  ( 2nd `  u
) >. ) )
21 df-ov 5880 . . . . . . . . . 10  |-  ( ( 1st `  u ) ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ( 2nd `  u
) )  =  ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) `  <. ( 1st `  u ) ,  ( 2nd `  u )
>. )
2220, 21eqtr4di 2228 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  S ) )  ->  ( (
x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) `  u
)  =  ( ( 1st `  u ) ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ( 2nd `  u
) ) )
23 xp1st 6168 . . . . . . . . . . 11  |-  ( u  e.  ( ( ZZ>= `  M )  X.  S
)  ->  ( 1st `  u )  e.  (
ZZ>= `  M ) )
2423adantl 277 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  S ) )  ->  ( 1st `  u )  e.  (
ZZ>= `  M ) )
25 xp2nd 6169 . . . . . . . . . . . 12  |-  ( u  e.  ( ( ZZ>= `  M )  X.  S
)  ->  ( 2nd `  u )  e.  S
)
2625adantl 277 . . . . . . . . . . 11  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  S ) )  ->  ( 2nd `  u )  e.  S
)
2726elexd 2752 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  S ) )  ->  ( 2nd `  u )  e.  _V )
28 peano2uz 9585 . . . . . . . . . . . 12  |-  ( ( 1st `  u )  e.  ( ZZ>= `  M
)  ->  ( ( 1st `  u )  +  1 )  e.  (
ZZ>= `  M ) )
2924, 28syl 14 . . . . . . . . . . 11  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  S ) )  ->  ( ( 1st `  u )  +  1 )  e.  (
ZZ>= `  M ) )
3012caovclg 6029 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( a  e.  S  /\  b  e.  S ) )  -> 
( a  .+  b
)  e.  S )
3130adantlr 477 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  S ) )  /\  ( a  e.  S  /\  b  e.  S ) )  -> 
( a  .+  b
)  e.  S )
32 fveq2 5517 . . . . . . . . . . . . . 14  |-  ( x  =  ( ( 1st `  u )  +  1 )  ->  ( F `  x )  =  ( F `  ( ( 1st `  u )  +  1 ) ) )
3332eleq1d 2246 . . . . . . . . . . . . 13  |-  ( x  =  ( ( 1st `  u )  +  1 )  ->  ( ( F `  x )  e.  S  <->  ( F `  ( ( 1st `  u
)  +  1 ) )  e.  S ) )
346adantr 276 . . . . . . . . . . . . 13  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  S ) )  ->  A. x  e.  ( ZZ>= `  M )
( F `  x
)  e.  S )
3533, 34, 29rspcdva 2848 . . . . . . . . . . . 12  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  S ) )  ->  ( F `  ( ( 1st `  u
)  +  1 ) )  e.  S )
3631, 26, 35caovcld 6030 . . . . . . . . . . 11  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  S ) )  ->  ( ( 2nd `  u )  .+  ( F `  ( ( 1st `  u )  +  1 ) ) )  e.  S )
37 opelxpi 4660 . . . . . . . . . . 11  |-  ( ( ( ( 1st `  u
)  +  1 )  e.  ( ZZ>= `  M
)  /\  ( ( 2nd `  u )  .+  ( F `  ( ( 1st `  u )  +  1 ) ) )  e.  S )  ->  <. ( ( 1st `  u )  +  1 ) ,  ( ( 2nd `  u ) 
.+  ( F `  ( ( 1st `  u
)  +  1 ) ) ) >.  e.  ( ( ZZ>= `  M )  X.  S ) )
3829, 36, 37syl2anc 411 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  S ) )  ->  <. ( ( 1st `  u )  +  1 ) ,  ( ( 2nd `  u
)  .+  ( F `  ( ( 1st `  u
)  +  1 ) ) ) >.  e.  ( ( ZZ>= `  M )  X.  S ) )
39 oveq1 5884 . . . . . . . . . . . 12  |-  ( x  =  ( 1st `  u
)  ->  ( x  +  1 )  =  ( ( 1st `  u
)  +  1 ) )
40 fvoveq1 5900 . . . . . . . . . . . . 13  |-  ( x  =  ( 1st `  u
)  ->  ( F `  ( x  +  1 ) )  =  ( F `  ( ( 1st `  u )  +  1 ) ) )
4140oveq2d 5893 . . . . . . . . . . . 12  |-  ( x  =  ( 1st `  u
)  ->  ( y  .+  ( F `  (
x  +  1 ) ) )  =  ( y  .+  ( F `
 ( ( 1st `  u )  +  1 ) ) ) )
4239, 41opeq12d 3788 . . . . . . . . . . 11  |-  ( x  =  ( 1st `  u
)  ->  <. ( x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >.  =  <. ( ( 1st `  u
)  +  1 ) ,  ( y  .+  ( F `  ( ( 1st `  u )  +  1 ) ) ) >. )
43 oveq1 5884 . . . . . . . . . . . 12  |-  ( y  =  ( 2nd `  u
)  ->  ( y  .+  ( F `  (
( 1st `  u
)  +  1 ) ) )  =  ( ( 2nd `  u
)  .+  ( F `  ( ( 1st `  u
)  +  1 ) ) ) )
4443opeq2d 3787 . . . . . . . . . . 11  |-  ( y  =  ( 2nd `  u
)  ->  <. ( ( 1st `  u )  +  1 ) ,  ( y  .+  ( F `  ( ( 1st `  u )  +  1 ) ) )
>.  =  <. ( ( 1st `  u )  +  1 ) ,  ( ( 2nd `  u
)  .+  ( F `  ( ( 1st `  u
)  +  1 ) ) ) >. )
45 eqid 2177 . . . . . . . . . . 11  |-  ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. )  =  (
x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. )
4642, 44, 45ovmpog 6011 . . . . . . . . . 10  |-  ( ( ( 1st `  u
)  e.  ( ZZ>= `  M )  /\  ( 2nd `  u )  e. 
_V  /\  <. ( ( 1st `  u )  +  1 ) ,  ( ( 2nd `  u
)  .+  ( F `  ( ( 1st `  u
)  +  1 ) ) ) >.  e.  ( ( ZZ>= `  M )  X.  S ) )  -> 
( ( 1st `  u
) ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ( 2nd `  u
) )  =  <. ( ( 1st `  u
)  +  1 ) ,  ( ( 2nd `  u )  .+  ( F `  ( ( 1st `  u )  +  1 ) ) )
>. )
4724, 27, 38, 46syl3anc 1238 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  S ) )  ->  ( ( 1st `  u ) ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) ( 2nd `  u ) )  = 
<. ( ( 1st `  u
)  +  1 ) ,  ( ( 2nd `  u )  .+  ( F `  ( ( 1st `  u )  +  1 ) ) )
>. )
4822, 47eqtrd 2210 . . . . . . . 8  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  S ) )  ->  ( (
x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) `  u
)  =  <. (
( 1st `  u
)  +  1 ) ,  ( ( 2nd `  u )  .+  ( F `  ( ( 1st `  u )  +  1 ) ) )
>. )
4948, 38eqeltrd 2254 . . . . . . 7  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  S ) )  ->  ( (
x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) `  u
)  e.  ( (
ZZ>= `  M )  X.  S ) )
5049ralrimiva 2550 . . . . . 6  |-  ( ph  ->  A. u  e.  ( ( ZZ>= `  M )  X.  S ) ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) `  u
)  e.  ( (
ZZ>= `  M )  X.  S ) )
51 opelxpi 4660 . . . . . . 7  |-  ( ( M  e.  ( ZZ>= `  M )  /\  ( F `  M )  e.  S )  ->  <. M , 
( F `  M
) >.  e.  ( (
ZZ>= `  M )  X.  S ) )
528, 9, 51syl2anc 411 . . . . . 6  |-  ( ph  -> 
<. M ,  ( F `
 M ) >.  e.  ( ( ZZ>= `  M
)  X.  S ) )
5350, 52jca 306 . . . . 5  |-  ( ph  ->  ( A. u  e.  ( ( ZZ>= `  M
)  X.  S ) ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) `  u )  e.  ( ( ZZ>= `  M
)  X.  S )  /\  <. M ,  ( F `  M )
>.  e.  ( ( ZZ>= `  M )  X.  S
) ) )
54 frecfcl 6408 . . . . 5  |-  ( ( A. u  e.  ( ( ZZ>= `  M )  X.  S ) ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) `  u
)  e.  ( (
ZZ>= `  M )  X.  S )  /\  <. M ,  ( F `  M ) >.  e.  ( ( ZZ>= `  M )  X.  S ) )  -> frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) : om --> ( ( ZZ>= `  M
)  X.  S ) )
55 ffn 5367 . . . . 5  |-  (frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) : om --> ( ( ZZ>= `  M
)  X.  S )  -> frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. )  Fn  om )
5653, 54, 553syl 17 . . . 4  |-  ( ph  -> frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )  Fn  om )
57 fveq2 5517 . . . . . . . 8  |-  ( c  =  (/)  ->  ( R `
 c )  =  ( R `  (/) ) )
58 fveq2 5517 . . . . . . . 8  |-  ( c  =  (/)  ->  (frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  c
)  =  (frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  (/) ) )
5957, 58eqeq12d 2192 . . . . . . 7  |-  ( c  =  (/)  ->  ( ( R `  c )  =  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) ,  <. M ,  ( F `  M ) >. ) `  c )  <->  ( R `  (/) )  =  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  (/) ) ) )
6059imbi2d 230 . . . . . 6  |-  ( c  =  (/)  ->  ( (
ph  ->  ( R `  c )  =  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  c
) )  <->  ( ph  ->  ( R `  (/) )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  (/) ) ) ) )
61 fveq2 5517 . . . . . . . 8  |-  ( c  =  k  ->  ( R `  c )  =  ( R `  k ) )
62 fveq2 5517 . . . . . . . 8  |-  ( c  =  k  ->  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  c
)  =  (frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  k
) )
6361, 62eqeq12d 2192 . . . . . . 7  |-  ( c  =  k  ->  (
( R `  c
)  =  (frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  c
)  <->  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  k
) ) )
6463imbi2d 230 . . . . . 6  |-  ( c  =  k  ->  (
( ph  ->  ( R `
 c )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  c
) )  <->  ( ph  ->  ( R `  k
)  =  (frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  k
) ) ) )
65 fveq2 5517 . . . . . . . 8  |-  ( c  =  suc  k  -> 
( R `  c
)  =  ( R `
 suc  k )
)
66 fveq2 5517 . . . . . . . 8  |-  ( c  =  suc  k  -> 
(frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  c
)  =  (frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  suc  k ) )
6765, 66eqeq12d 2192 . . . . . . 7  |-  ( c  =  suc  k  -> 
( ( R `  c )  =  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  c
)  <->  ( R `  suc  k )  =  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  suc  k ) ) )
6867imbi2d 230 . . . . . 6  |-  ( c  =  suc  k  -> 
( ( ph  ->  ( R `  c )  =  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) ,  <. M ,  ( F `  M ) >. ) `  c ) )  <->  ( ph  ->  ( R `  suc  k )  =  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  suc  k ) ) ) )
69 fveq2 5517 . . . . . . . 8  |-  ( c  =  n  ->  ( R `  c )  =  ( R `  n ) )
70 fveq2 5517 . . . . . . . 8  |-  ( c  =  n  ->  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  c
)  =  (frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  n
) )
7169, 70eqeq12d 2192 . . . . . . 7  |-  ( c  =  n  ->  (
( R `  c
)  =  (frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  c
)  <->  ( R `  n )  =  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  n
) ) )
7271imbi2d 230 . . . . . 6  |-  ( c  =  n  ->  (
( ph  ->  ( R `
 c )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  c
) )  <->  ( ph  ->  ( R `  n
)  =  (frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  n
) ) ) )
7314fveq1i 5518 . . . . . . . 8  |-  ( R `
 (/) )  =  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. M , 
( F `  M
) >. ) `  (/) )
74 frec0g 6400 . . . . . . . . 9  |-  ( <. M ,  ( F `  M ) >.  e.  ( ( ZZ>= `  M )  X.  S )  ->  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. M , 
( F `  M
) >. ) `  (/) )  = 
<. M ,  ( F `
 M ) >.
)
7552, 74syl 14 . . . . . . . 8  |-  ( ph  ->  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )
>. ) ,  <. M , 
( F `  M
) >. ) `  (/) )  = 
<. M ,  ( F `
 M ) >.
)
7673, 75eqtrid 2222 . . . . . . 7  |-  ( ph  ->  ( R `  (/) )  = 
<. M ,  ( F `
 M ) >.
)
77 frec0g 6400 . . . . . . . 8  |-  ( <. M ,  ( F `  M ) >.  e.  ( ( ZZ>= `  M )  X.  S )  ->  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  (/) )  = 
<. M ,  ( F `
 M ) >.
)
7852, 77syl 14 . . . . . . 7  |-  ( ph  ->  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  (/) )  = 
<. M ,  ( F `
 M ) >.
)
7976, 78eqtr4d 2213 . . . . . 6  |-  ( ph  ->  ( R `  (/) )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  (/) ) )
8015ad2antlr 489 . . . . . . . . . . . 12  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  R : om --> ( ( ZZ>= `  M )  X.  S
) )
81 simpll 527 . . . . . . . . . . . 12  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  k  e.  om )
8280, 81ffvelcdmd 5654 . . . . . . . . . . 11  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  ( R `  k )  e.  ( ( ZZ>= `  M
)  X.  S ) )
83 xp1st 6168 . . . . . . . . . . 11  |-  ( ( R `  k )  e.  ( ( ZZ>= `  M )  X.  S
)  ->  ( 1st `  ( R `  k
) )  e.  (
ZZ>= `  M ) )
8482, 83syl 14 . . . . . . . . . 10  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  ( 1st `  ( R `  k ) )  e.  ( ZZ>= `  M )
)
85 xp2nd 6169 . . . . . . . . . . . 12  |-  ( ( R `  k )  e.  ( ( ZZ>= `  M )  X.  S
)  ->  ( 2nd `  ( R `  k
) )  e.  S
)
8682, 85syl 14 . . . . . . . . . . 11  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  ( 2nd `  ( R `  k ) )  e.  S )
8786elexd 2752 . . . . . . . . . 10  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  ( 2nd `  ( R `  k ) )  e. 
_V )
8830adantll 476 . . . . . . . . . . . . . . 15  |-  ( ( ( k  e.  om  /\ 
ph )  /\  (
a  e.  S  /\  b  e.  S )
)  ->  ( a  .+  b )  e.  S
)
8988adantlr 477 . . . . . . . . . . . . . 14  |-  ( ( ( ( k  e. 
om  /\  ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) ,  <. M ,  ( F `  M ) >. ) `  k ) )  /\  ( a  e.  S  /\  b  e.  S
) )  ->  (
a  .+  b )  e.  S )
90 fveq2 5517 . . . . . . . . . . . . . . . 16  |-  ( a  =  ( ( 1st `  ( R `  k
) )  +  1 )  ->  ( F `  a )  =  ( F `  ( ( 1st `  ( R `
 k ) )  +  1 ) ) )
9190eleq1d 2246 . . . . . . . . . . . . . . 15  |-  ( a  =  ( ( 1st `  ( R `  k
) )  +  1 )  ->  ( ( F `  a )  e.  S  <->  ( F `  ( ( 1st `  ( R `  k )
)  +  1 ) )  e.  S ) )
92 fveq2 5517 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  a  ->  ( F `  x )  =  ( F `  a ) )
9392eleq1d 2246 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  a  ->  (
( F `  x
)  e.  S  <->  ( F `  a )  e.  S
) )
9493cbvralv 2705 . . . . . . . . . . . . . . . . 17  |-  ( A. x  e.  ( ZZ>= `  M ) ( F `
 x )  e.  S  <->  A. a  e.  (
ZZ>= `  M ) ( F `  a )  e.  S )
956, 94sylib 122 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A. a  e.  (
ZZ>= `  M ) ( F `  a )  e.  S )
9695ad2antlr 489 . . . . . . . . . . . . . . 15  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  A. a  e.  ( ZZ>= `  M )
( F `  a
)  e.  S )
97 peano2uz 9585 . . . . . . . . . . . . . . . 16  |-  ( ( 1st `  ( R `
 k ) )  e.  ( ZZ>= `  M
)  ->  ( ( 1st `  ( R `  k ) )  +  1 )  e.  (
ZZ>= `  M ) )
9884, 97syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  (
( 1st `  ( R `  k )
)  +  1 )  e.  ( ZZ>= `  M
) )
9991, 96, 98rspcdva 2848 . . . . . . . . . . . . . 14  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  ( F `  ( ( 1st `  ( R `  k ) )  +  1 ) )  e.  S )
10089, 86, 99caovcld 6030 . . . . . . . . . . . . 13  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  (
( 2nd `  ( R `  k )
)  .+  ( F `  ( ( 1st `  ( R `  k )
)  +  1 ) ) )  e.  S
)
101 fvoveq1 5900 . . . . . . . . . . . . . . 15  |-  ( z  =  ( 1st `  ( R `  k )
)  ->  ( F `  ( z  +  1 ) )  =  ( F `  ( ( 1st `  ( R `
 k ) )  +  1 ) ) )
102101oveq2d 5893 . . . . . . . . . . . . . 14  |-  ( z  =  ( 1st `  ( R `  k )
)  ->  ( w  .+  ( F `  (
z  +  1 ) ) )  =  ( w  .+  ( F `
 ( ( 1st `  ( R `  k
) )  +  1 ) ) ) )
103 oveq1 5884 . . . . . . . . . . . . . 14  |-  ( w  =  ( 2nd `  ( R `  k )
)  ->  ( w  .+  ( F `  (
( 1st `  ( R `  k )
)  +  1 ) ) )  =  ( ( 2nd `  ( R `  k )
)  .+  ( F `  ( ( 1st `  ( R `  k )
)  +  1 ) ) ) )
104 eqid 2177 . . . . . . . . . . . . . 14  |-  ( z  e.  ( ZZ>= `  M
) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) )  =  ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) )
105102, 103, 104ovmpog 6011 . . . . . . . . . . . . 13  |-  ( ( ( 1st `  ( R `  k )
)  e.  ( ZZ>= `  M )  /\  ( 2nd `  ( R `  k ) )  e.  S  /\  ( ( 2nd `  ( R `
 k ) ) 
.+  ( F `  ( ( 1st `  ( R `  k )
)  +  1 ) ) )  e.  S
)  ->  ( ( 1st `  ( R `  k ) ) ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  ( R `  k )
) )  =  ( ( 2nd `  ( R `  k )
)  .+  ( F `  ( ( 1st `  ( R `  k )
)  +  1 ) ) ) )
10684, 86, 100, 105syl3anc 1238 . . . . . . . . . . . 12  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  (
( 1st `  ( R `  k )
) ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  ( R `  k
) ) )  =  ( ( 2nd `  ( R `  k )
)  .+  ( F `  ( ( 1st `  ( R `  k )
)  +  1 ) ) ) )
107106opeq2d 3787 . . . . . . . . . . 11  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  <. (
( 1st `  ( R `  k )
)  +  1 ) ,  ( ( 1st `  ( R `  k
) ) ( z  e.  ( ZZ>= `  M
) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  ( R `  k
) ) ) >.  =  <. ( ( 1st `  ( R `  k
) )  +  1 ) ,  ( ( 2nd `  ( R `
 k ) ) 
.+  ( F `  ( ( 1st `  ( R `  k )
)  +  1 ) ) ) >. )
108106, 100eqeltrd 2254 . . . . . . . . . . . 12  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  (
( 1st `  ( R `  k )
) ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  ( R `  k
) ) )  e.  S )
109 opelxpi 4660 . . . . . . . . . . . 12  |-  ( ( ( ( 1st `  ( R `  k )
)  +  1 )  e.  ( ZZ>= `  M
)  /\  ( ( 1st `  ( R `  k ) ) ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  ( R `  k )
) )  e.  S
)  ->  <. ( ( 1st `  ( R `
 k ) )  +  1 ) ,  ( ( 1st `  ( R `  k )
) ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  ( R `  k
) ) ) >.  e.  ( ( ZZ>= `  M
)  X.  S ) )
11098, 108, 109syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  <. (
( 1st `  ( R `  k )
)  +  1 ) ,  ( ( 1st `  ( R `  k
) ) ( z  e.  ( ZZ>= `  M
) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  ( R `  k
) ) ) >.  e.  ( ( ZZ>= `  M
)  X.  S ) )
111107, 110eqeltrrd 2255 . . . . . . . . . 10  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  <. (
( 1st `  ( R `  k )
)  +  1 ) ,  ( ( 2nd `  ( R `  k
) )  .+  ( F `  ( ( 1st `  ( R `  k ) )  +  1 ) ) )
>.  e.  ( ( ZZ>= `  M )  X.  S
) )
112 oveq1 5884 . . . . . . . . . . . 12  |-  ( x  =  ( 1st `  ( R `  k )
)  ->  ( x  +  1 )  =  ( ( 1st `  ( R `  k )
)  +  1 ) )
113 fvoveq1 5900 . . . . . . . . . . . . 13  |-  ( x  =  ( 1st `  ( R `  k )
)  ->  ( F `  ( x  +  1 ) )  =  ( F `  ( ( 1st `  ( R `
 k ) )  +  1 ) ) )
114113oveq2d 5893 . . . . . . . . . . . 12  |-  ( x  =  ( 1st `  ( R `  k )
)  ->  ( y  .+  ( F `  (
x  +  1 ) ) )  =  ( y  .+  ( F `
 ( ( 1st `  ( R `  k
) )  +  1 ) ) ) )
115112, 114opeq12d 3788 . . . . . . . . . . 11  |-  ( x  =  ( 1st `  ( R `  k )
)  ->  <. ( x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >.  =  <. ( ( 1st `  ( R `  k )
)  +  1 ) ,  ( y  .+  ( F `  ( ( 1st `  ( R `
 k ) )  +  1 ) ) ) >. )
116 oveq1 5884 . . . . . . . . . . . 12  |-  ( y  =  ( 2nd `  ( R `  k )
)  ->  ( y  .+  ( F `  (
( 1st `  ( R `  k )
)  +  1 ) ) )  =  ( ( 2nd `  ( R `  k )
)  .+  ( F `  ( ( 1st `  ( R `  k )
)  +  1 ) ) ) )
117116opeq2d 3787 . . . . . . . . . . 11  |-  ( y  =  ( 2nd `  ( R `  k )
)  ->  <. ( ( 1st `  ( R `
 k ) )  +  1 ) ,  ( y  .+  ( F `  ( ( 1st `  ( R `  k ) )  +  1 ) ) )
>.  =  <. ( ( 1st `  ( R `
 k ) )  +  1 ) ,  ( ( 2nd `  ( R `  k )
)  .+  ( F `  ( ( 1st `  ( R `  k )
)  +  1 ) ) ) >. )
118115, 117, 45ovmpog 6011 . . . . . . . . . 10  |-  ( ( ( 1st `  ( R `  k )
)  e.  ( ZZ>= `  M )  /\  ( 2nd `  ( R `  k ) )  e. 
_V  /\  <. ( ( 1st `  ( R `
 k ) )  +  1 ) ,  ( ( 2nd `  ( R `  k )
)  .+  ( F `  ( ( 1st `  ( R `  k )
)  +  1 ) ) ) >.  e.  ( ( ZZ>= `  M )  X.  S ) )  -> 
( ( 1st `  ( R `  k )
) ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ( 2nd `  ( R `  k )
) )  =  <. ( ( 1st `  ( R `  k )
)  +  1 ) ,  ( ( 2nd `  ( R `  k
) )  .+  ( F `  ( ( 1st `  ( R `  k ) )  +  1 ) ) )
>. )
11984, 87, 111, 118syl3anc 1238 . . . . . . . . 9  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  (
( 1st `  ( R `  k )
) ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ( 2nd `  ( R `  k )
) )  =  <. ( ( 1st `  ( R `  k )
)  +  1 ) ,  ( ( 2nd `  ( R `  k
) )  .+  ( F `  ( ( 1st `  ( R `  k ) )  +  1 ) ) )
>. )
12050ad2antlr 489 . . . . . . . . . . . 12  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  A. u  e.  ( ( ZZ>= `  M
)  X.  S ) ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) `  u )  e.  ( ( ZZ>= `  M
)  X.  S ) )
12152ad2antlr 489 . . . . . . . . . . . 12  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  <. M , 
( F `  M
) >.  e.  ( (
ZZ>= `  M )  X.  S ) )
122 frecsuc 6410 . . . . . . . . . . . 12  |-  ( ( A. u  e.  ( ( ZZ>= `  M )  X.  S ) ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) `  u
)  e.  ( (
ZZ>= `  M )  X.  S )  /\  <. M ,  ( F `  M ) >.  e.  ( ( ZZ>= `  M )  X.  S )  /\  k  e.  om )  ->  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  suc  k )  =  ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) `  (frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  k
) ) )
123120, 121, 81, 122syl3anc 1238 . . . . . . . . . . 11  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  suc  k )  =  ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) `  (frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  k
) ) )
124 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )
125124fveq2d 5521 . . . . . . . . . . 11  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) `  ( R `  k ) )  =  ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) `  (frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  k
) ) )
126123, 125eqtr4d 2213 . . . . . . . . . 10  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  suc  k )  =  ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) `  ( R `  k ) ) )
127 1st2nd2 6178 . . . . . . . . . . . . 13  |-  ( ( R `  k )  e.  ( ( ZZ>= `  M )  X.  S
)  ->  ( R `  k )  =  <. ( 1st `  ( R `
 k ) ) ,  ( 2nd `  ( R `  k )
) >. )
12882, 127syl 14 . . . . . . . . . . . 12  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  ( R `  k )  =  <. ( 1st `  ( R `  k )
) ,  ( 2nd `  ( R `  k
) ) >. )
129128fveq2d 5521 . . . . . . . . . . 11  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) `  ( R `  k ) )  =  ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) `  <. ( 1st `  ( R `  k
) ) ,  ( 2nd `  ( R `
 k ) )
>. ) )
130 df-ov 5880 . . . . . . . . . . 11  |-  ( ( 1st `  ( R `
 k ) ) ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ( 2nd `  ( R `  k )
) )  =  ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) `  <. ( 1st `  ( R `  k
) ) ,  ( 2nd `  ( R `
 k ) )
>. )
131129, 130eqtr4di 2228 . . . . . . . . . 10  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) `  ( R `  k ) )  =  ( ( 1st `  ( R `  k )
) ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ( 2nd `  ( R `  k )
) ) )
132126, 131eqtrd 2210 . . . . . . . . 9  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  suc  k )  =  ( ( 1st `  ( R `  k )
) ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ( 2nd `  ( R `  k )
) ) )
13314fveq1i 5518 . . . . . . . . . . . . . . 15  |-  ( R `
 suc  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )
>. ) ,  <. M , 
( F `  M
) >. ) `  suc  k )
13419fveq2d 5521 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  S ) )  ->  ( (
x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) y ) >. ) `  u )  =  ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) `  <. ( 1st `  u ) ,  ( 2nd `  u )
>. ) )
135 df-ov 5880 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 1st `  u ) ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ( 2nd `  u
) )  =  ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) `  <. ( 1st `  u ) ,  ( 2nd `  u )
>. )
136134, 135eqtr4di 2228 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  S ) )  ->  ( (
x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) y ) >. ) `  u )  =  ( ( 1st `  u
) ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ( 2nd `  u
) ) )
137 fvoveq1 5900 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( z  =  ( 1st `  u
)  ->  ( F `  ( z  +  1 ) )  =  ( F `  ( ( 1st `  u )  +  1 ) ) )
138137oveq2d 5893 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( z  =  ( 1st `  u
)  ->  ( w  .+  ( F `  (
z  +  1 ) ) )  =  ( w  .+  ( F `
 ( ( 1st `  u )  +  1 ) ) ) )
139 oveq1 5884 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( w  =  ( 2nd `  u
)  ->  ( w  .+  ( F `  (
( 1st `  u
)  +  1 ) ) )  =  ( ( 2nd `  u
)  .+  ( F `  ( ( 1st `  u
)  +  1 ) ) ) )
140138, 139, 104ovmpog 6011 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( 1st `  u
)  e.  ( ZZ>= `  M )  /\  ( 2nd `  u )  e.  S  /\  ( ( 2nd `  u ) 
.+  ( F `  ( ( 1st `  u
)  +  1 ) ) )  e.  S
)  ->  ( ( 1st `  u ) ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  u
) )  =  ( ( 2nd `  u
)  .+  ( F `  ( ( 1st `  u
)  +  1 ) ) ) )
14124, 26, 36, 140syl3anc 1238 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  S ) )  ->  ( ( 1st `  u ) ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  u
) )  =  ( ( 2nd `  u
)  .+  ( F `  ( ( 1st `  u
)  +  1 ) ) ) )
142141, 36eqeltrd 2254 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  S ) )  ->  ( ( 1st `  u ) ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  u
) )  e.  S
)
143 opelxpi 4660 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( 1st `  u
)  +  1 )  e.  ( ZZ>= `  M
)  /\  ( ( 1st `  u ) ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  u
) )  e.  S
)  ->  <. ( ( 1st `  u )  +  1 ) ,  ( ( 1st `  u
) ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  u ) ) >.  e.  ( ( ZZ>= `  M
)  X.  S ) )
14429, 142, 143syl2anc 411 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  S ) )  ->  <. ( ( 1st `  u )  +  1 ) ,  ( ( 1st `  u
) ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  u ) ) >.  e.  ( ( ZZ>= `  M
)  X.  S ) )
145 oveq1 5884 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  =  ( 1st `  u
)  ->  ( x
( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y )  =  ( ( 1st `  u
) ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y ) )
14639, 145opeq12d 3788 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  ( 1st `  u
)  ->  <. ( x  +  1 ) ,  ( x ( z  e.  ( ZZ>= `  M
) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )
>.  =  <. ( ( 1st `  u )  +  1 ) ,  ( ( 1st `  u
) ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )
>. )
147 oveq2 5885 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y  =  ( 2nd `  u
)  ->  ( ( 1st `  u ) ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) y )  =  ( ( 1st `  u
) ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  u ) ) )
148147opeq2d 3787 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  =  ( 2nd `  u
)  ->  <. ( ( 1st `  u )  +  1 ) ,  ( ( 1st `  u
) ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )
>.  =  <. ( ( 1st `  u )  +  1 ) ,  ( ( 1st `  u
) ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  u ) ) >.
)
149 eqid 2177 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )
>. )  =  (
x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) y ) >. )
150146, 148, 149ovmpog 6011 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( 1st `  u
)  e.  ( ZZ>= `  M )  /\  ( 2nd `  u )  e. 
_V  /\  <. ( ( 1st `  u )  +  1 ) ,  ( ( 1st `  u
) ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  u ) ) >.  e.  ( ( ZZ>= `  M
)  X.  S ) )  ->  ( ( 1st `  u ) ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) y ) >. )
( 2nd `  u
) )  =  <. ( ( 1st `  u
)  +  1 ) ,  ( ( 1st `  u ) ( z  e.  ( ZZ>= `  M
) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  u ) ) >.
)
15124, 27, 144, 150syl3anc 1238 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  S ) )  ->  ( ( 1st `  u ) ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) y ) >. )
( 2nd `  u
) )  =  <. ( ( 1st `  u
)  +  1 ) ,  ( ( 1st `  u ) ( z  e.  ( ZZ>= `  M
) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  u ) ) >.
)
152136, 151eqtrd 2210 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  S ) )  ->  ( (
x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) y ) >. ) `  u )  =  <. ( ( 1st `  u
)  +  1 ) ,  ( ( 1st `  u ) ( z  e.  ( ZZ>= `  M
) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  u ) ) >.
)
153152, 144eqeltrd 2254 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  S ) )  ->  ( (
x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) y ) >. ) `  u )  e.  ( ( ZZ>= `  M )  X.  S ) )
154153ralrimiva 2550 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A. u  e.  ( ( ZZ>= `  M )  X.  S ) ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) y ) >. ) `  u )  e.  ( ( ZZ>= `  M )  X.  S ) )
155154ad2antlr 489 . . . . . . . . . . . . . . . 16  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  A. u  e.  ( ( ZZ>= `  M
)  X.  S ) ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) `  u )  e.  ( ( ZZ>= `  M
)  X.  S ) )
156 frecsuc 6410 . . . . . . . . . . . . . . . 16  |-  ( ( A. u  e.  ( ( ZZ>= `  M )  X.  S ) ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) y ) >. ) `  u )  e.  ( ( ZZ>= `  M )  X.  S )  /\  <. M ,  ( F `  M ) >.  e.  ( ( ZZ>= `  M )  X.  S )  /\  k  e.  om )  ->  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. M , 
( F `  M
) >. ) `  suc  k )  =  ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) `  (frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. M , 
( F `  M
) >. ) `  k
) ) )
157155, 121, 81, 156syl3anc 1238 . . . . . . . . . . . . . . 15  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. M , 
( F `  M
) >. ) `  suc  k )  =  ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) `  (frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. M , 
( F `  M
) >. ) `  k
) ) )
158133, 157eqtrid 2222 . . . . . . . . . . . . . 14  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  ( R `  suc  k )  =  ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )
>. ) `  (frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. M , 
( F `  M
) >. ) `  k
) ) )
15914fveq1i 5518 . . . . . . . . . . . . . . 15  |-  ( R `
 k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
)
160159fveq2i 5520 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) y ) >. ) `  ( R `  k
) )  =  ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) `  (frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. M , 
( F `  M
) >. ) `  k
) )
161158, 160eqtr4di 2228 . . . . . . . . . . . . 13  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  ( R `  suc  k )  =  ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )
>. ) `  ( R `
 k ) ) )
162128fveq2d 5521 . . . . . . . . . . . . 13  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) `  ( R `  k ) )  =  ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) `  <. ( 1st `  ( R `  k
) ) ,  ( 2nd `  ( R `
 k ) )
>. ) )
163161, 162eqtrd 2210 . . . . . . . . . . . 12  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  ( R `  suc  k )  =  ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )
>. ) `  <. ( 1st `  ( R `  k ) ) ,  ( 2nd `  ( R `  k )
) >. ) )
164 df-ov 5880 . . . . . . . . . . . 12  |-  ( ( 1st `  ( R `
 k ) ) ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ( 2nd `  ( R `  k )
) )  =  ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) `  <. ( 1st `  ( R `  k
) ) ,  ( 2nd `  ( R `
 k ) )
>. )
165163, 164eqtr4di 2228 . . . . . . . . . . 11  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  ( R `  suc  k )  =  ( ( 1st `  ( R `  k
) ) ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )
>. ) ( 2nd `  ( R `  k )
) ) )
166 oveq1 5884 . . . . . . . . . . . . . 14  |-  ( x  =  ( 1st `  ( R `  k )
)  ->  ( x
( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y )  =  ( ( 1st `  ( R `  k )
) ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y ) )
167112, 166opeq12d 3788 . . . . . . . . . . . . 13  |-  ( x  =  ( 1st `  ( R `  k )
)  ->  <. ( x  +  1 ) ,  ( x ( z  e.  ( ZZ>= `  M
) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )
>.  =  <. ( ( 1st `  ( R `
 k ) )  +  1 ) ,  ( ( 1st `  ( R `  k )
) ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )
>. )
168 oveq2 5885 . . . . . . . . . . . . . 14  |-  ( y  =  ( 2nd `  ( R `  k )
)  ->  ( ( 1st `  ( R `  k ) ) ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) y )  =  ( ( 1st `  ( R `  k )
) ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  ( R `  k
) ) ) )
169168opeq2d 3787 . . . . . . . . . . . . 13  |-  ( y  =  ( 2nd `  ( R `  k )
)  ->  <. ( ( 1st `  ( R `
 k ) )  +  1 ) ,  ( ( 1st `  ( R `  k )
) ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )
>.  =  <. ( ( 1st `  ( R `
 k ) )  +  1 ) ,  ( ( 1st `  ( R `  k )
) ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  ( R `  k
) ) ) >.
)
170167, 169, 149ovmpog 6011 . . . . . . . . . . . 12  |-  ( ( ( 1st `  ( R `  k )
)  e.  ( ZZ>= `  M )  /\  ( 2nd `  ( R `  k ) )  e. 
_V  /\  <. ( ( 1st `  ( R `
 k ) )  +  1 ) ,  ( ( 1st `  ( R `  k )
) ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  ( R `  k
) ) ) >.  e.  ( ( ZZ>= `  M
)  X.  S ) )  ->  ( ( 1st `  ( R `  k ) ) ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) y ) >. )
( 2nd `  ( R `  k )
) )  =  <. ( ( 1st `  ( R `  k )
)  +  1 ) ,  ( ( 1st `  ( R `  k
) ) ( z  e.  ( ZZ>= `  M
) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  ( R `  k
) ) ) >.
)
17184, 87, 110, 170syl3anc 1238 . . . . . . . . . . 11  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  (
( 1st `  ( R `  k )
) ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ( 2nd `  ( R `  k )
) )  =  <. ( ( 1st `  ( R `  k )
)  +  1 ) ,  ( ( 1st `  ( R `  k
) ) ( z  e.  ( ZZ>= `  M
) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  ( R `  k
) ) ) >.
)
172165, 171eqtrd 2210 . . . . . . . . . 10  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  ( R `  suc  k )  =  <. ( ( 1st `  ( R `  k
) )  +  1 ) ,  ( ( 1st `  ( R `
 k ) ) ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) ( 2nd `  ( R `  k )
) ) >. )
173172, 107eqtrd 2210 . . . . . . . . 9  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  ( R `  suc  k )  =  <. ( ( 1st `  ( R `  k
) )  +  1 ) ,  ( ( 2nd `  ( R `
 k ) ) 
.+  ( F `  ( ( 1st `  ( R `  k )
)  +  1 ) ) ) >. )
174119, 132, 1733eqtr4rd 2221 . . . . . . . 8  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  ( R `  suc  k )  =  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) ,  <. M ,  ( F `  M ) >. ) `  suc  k ) )
175174exp31 364 . . . . . . 7  |-  ( k  e.  om  ->  ( ph  ->  ( ( R `
 k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
)  ->  ( R `  suc  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  suc  k ) ) ) )
176175a2d 26 . . . . . 6  |-  ( k  e.  om  ->  (
( ph  ->  ( R `
 k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  ( ph  ->  ( R `  suc  k )  =  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  suc  k ) ) ) )
17760, 64, 68, 72, 79, 176finds 4601 . . . . 5  |-  ( n  e.  om  ->  ( ph  ->  ( R `  n )  =  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  n
) ) )
178177impcom 125 . . . 4  |-  ( (
ph  /\  n  e.  om )  ->  ( R `  n )  =  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  n
) )
17917, 56, 178eqfnfvd 5618 . . 3  |-  ( ph  ->  R  = frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) ,  <. M ,  ( F `  M ) >. )
)
180179rneqd 4858 . 2  |-  ( ph  ->  ran  R  =  ran frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) )
1811, 180eqtr4id 2229 1  |-  ( ph  ->  seq M (  .+  ,  F )  =  ran  R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   A.wral 2455   _Vcvv 2739    C_ wss 3131   (/)c0 3424   <.cop 3597   suc csuc 4367   omcom 4591    X. cxp 4626   ran crn 4629    Fn wfn 5213   -->wf 5214   ` cfv 5218  (class class class)co 5877    e. cmpo 5879   1stc1st 6141   2ndc2nd 6142  freccfrec 6393   1c1 7814    + caddc 7816   ZZcz 9255   ZZ>=cuz 9530    seqcseq 10447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256  df-uz 9531  df-seqfrec 10448
This theorem is referenced by:  seq3-1  10462  seqf  10463  seq3p1  10464
  Copyright terms: Public domain W3C validator