ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodcl2lem Unicode version

Theorem fprodcl2lem 11546
Description: Finite product closure lemma. (Contributed by Scott Fenton, 14-Dec-2017.) (Revised by Jim Kingdon, 17-Aug-2024.)
Hypotheses
Ref Expression
fprodcllem.1  |-  ( ph  ->  S  C_  CC )
fprodcllem.2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  x.  y
)  e.  S )
fprodcllem.3  |-  ( ph  ->  A  e.  Fin )
fprodcllem.4  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  S )
fprodcl2lem.5  |-  ( ph  ->  A  =/=  (/) )
Assertion
Ref Expression
fprodcl2lem  |-  ( ph  ->  prod_ k  e.  A  B  e.  S )
Distinct variable groups:    A, k, x, y    x, B, y    S, k, x, y    ph, k, x, y
Allowed substitution hint:    B( k)

Proof of Theorem fprodcl2lem
Dummy variables  w  z  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fprodcl2lem.5 . . 3  |-  ( ph  ->  A  =/=  (/) )
21neneqd 2357 . 2  |-  ( ph  ->  -.  A  =  (/) )
3 eqeq1 2172 . . . . 5  |-  ( w  =  (/)  ->  ( w  =  (/)  <->  (/)  =  (/) ) )
4 prodeq1 11494 . . . . . 6  |-  ( w  =  (/)  ->  prod_ k  e.  w  B  =  prod_ k  e.  (/)  B )
54eleq1d 2235 . . . . 5  |-  ( w  =  (/)  ->  ( prod_
k  e.  w  B  e.  S  <->  prod_ k  e.  (/)  B  e.  S ) )
63, 5orbi12d 783 . . . 4  |-  ( w  =  (/)  ->  ( ( w  =  (/)  \/  prod_ k  e.  w  B  e.  S )  <->  ( (/)  =  (/)  \/ 
prod_ k  e.  (/)  B  e.  S ) ) )
7 eqeq1 2172 . . . . 5  |-  ( w  =  y  ->  (
w  =  (/)  <->  y  =  (/) ) )
8 prodeq1 11494 . . . . . 6  |-  ( w  =  y  ->  prod_ k  e.  w  B  = 
prod_ k  e.  y  B )
98eleq1d 2235 . . . . 5  |-  ( w  =  y  ->  ( prod_ k  e.  w  B  e.  S  <->  prod_ k  e.  y  B  e.  S
) )
107, 9orbi12d 783 . . . 4  |-  ( w  =  y  ->  (
( w  =  (/)  \/ 
prod_ k  e.  w  B  e.  S )  <->  ( y  =  (/)  \/  prod_ k  e.  y  B  e.  S ) ) )
11 eqeq1 2172 . . . . 5  |-  ( w  =  ( y  u. 
{ z } )  ->  ( w  =  (/) 
<->  ( y  u.  {
z } )  =  (/) ) )
12 prodeq1 11494 . . . . . 6  |-  ( w  =  ( y  u. 
{ z } )  ->  prod_ k  e.  w  B  =  prod_ k  e.  ( y  u.  {
z } ) B )
1312eleq1d 2235 . . . . 5  |-  ( w  =  ( y  u. 
{ z } )  ->  ( prod_ k  e.  w  B  e.  S 
<-> 
prod_ k  e.  (
y  u.  { z } ) B  e.  S ) )
1411, 13orbi12d 783 . . . 4  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( w  =  (/)  \/  prod_ k  e.  w  B  e.  S )  <->  ( (
y  u.  { z } )  =  (/)  \/ 
prod_ k  e.  (
y  u.  { z } ) B  e.  S ) ) )
15 eqeq1 2172 . . . . 5  |-  ( w  =  A  ->  (
w  =  (/)  <->  A  =  (/) ) )
16 prodeq1 11494 . . . . . 6  |-  ( w  =  A  ->  prod_ k  e.  w  B  = 
prod_ k  e.  A  B )
1716eleq1d 2235 . . . . 5  |-  ( w  =  A  ->  ( prod_ k  e.  w  B  e.  S  <->  prod_ k  e.  A  B  e.  S
) )
1815, 17orbi12d 783 . . . 4  |-  ( w  =  A  ->  (
( w  =  (/)  \/ 
prod_ k  e.  w  B  e.  S )  <->  ( A  =  (/)  \/  prod_ k  e.  A  B  e.  S ) ) )
19 eqidd 2166 . . . . 5  |-  ( ph  -> 
(/)  =  (/) )
2019orcd 723 . . . 4  |-  ( ph  ->  ( (/)  =  (/)  \/  prod_ k  e.  (/)  B  e.  S
) )
21 nfcsb1v 3078 . . . . . . . . . 10  |-  F/_ k [_ z  /  k ]_ B
22 simplr 520 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  y  e.  Fin )
23 simprr 522 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  z  e.  ( A  \  y ) )
2423eldifbd 3128 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  -.  z  e.  y )
25 fprodcllem.1 . . . . . . . . . . . 12  |-  ( ph  ->  S  C_  CC )
2625ad3antrrr 484 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  S  C_  CC )
27 simplll 523 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  ph )
28 simplrl 525 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  y  C_  A )
29 simpr 109 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  k  e.  y )
3028, 29sseldd 3143 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  k  e.  A )
31 fprodcllem.4 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  S )
3227, 30, 31syl2anc 409 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  B  e.  S )
3326, 32sseldd 3143 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  B  e.  CC )
3425ad2antrr 480 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  S  C_  CC )
35 simpll 519 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ph )
3623eldifad 3127 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  z  e.  A
)
3731ralrimiva 2539 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. k  e.  A  B  e.  S )
38 nfv 1516 . . . . . . . . . . . . . . 15  |-  F/ z  B  e.  S
3921nfel1 2319 . . . . . . . . . . . . . . 15  |-  F/ k
[_ z  /  k ]_ B  e.  S
40 csbeq1a 3054 . . . . . . . . . . . . . . . 16  |-  ( k  =  z  ->  B  =  [_ z  /  k ]_ B )
4140eleq1d 2235 . . . . . . . . . . . . . . 15  |-  ( k  =  z  ->  ( B  e.  S  <->  [_ z  / 
k ]_ B  e.  S
) )
4238, 39, 41cbvral 2688 . . . . . . . . . . . . . 14  |-  ( A. k  e.  A  B  e.  S  <->  A. z  e.  A  [_ z  /  k ]_ B  e.  S )
4337, 42sylib 121 . . . . . . . . . . . . 13  |-  ( ph  ->  A. z  e.  A  [_ z  /  k ]_ B  e.  S )
4443r19.21bi 2554 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  A )  ->  [_ z  /  k ]_ B  e.  S )
4535, 36, 44syl2anc 409 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  [_ z  /  k ]_ B  e.  S
)
4634, 45sseldd 3143 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  [_ z  /  k ]_ B  e.  CC )
4721, 22, 23, 24, 33, 46, 40fprodunsn 11545 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  prod_ k  e.  ( y  u.  { z } ) B  =  ( prod_ k  e.  y  B  x.  [_ z  /  k ]_ B
) )
4847adantr 274 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  y  =  (/) )  ->  prod_ k  e.  ( y  u.  {
z } ) B  =  ( prod_ k  e.  y  B  x.  [_ z  /  k ]_ B ) )
49 simpr 109 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  y  =  (/) )  ->  y  =  (/) )
5049prodeq1d 11505 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  y  =  (/) )  ->  prod_ k  e.  y  B  =  prod_ k  e.  (/)  B )
51 prod0 11526 . . . . . . . . . . . 12  |-  prod_ k  e.  (/)  B  =  1
5250, 51eqtrdi 2215 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  y  =  (/) )  ->  prod_ k  e.  y  B  = 
1 )
5352oveq1d 5857 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  y  =  (/) )  ->  ( prod_
k  e.  y  B  x.  [_ z  / 
k ]_ B )  =  ( 1  x.  [_ z  /  k ]_ B
) )
5446adantr 274 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  y  =  (/) )  ->  [_ z  /  k ]_ B  e.  CC )
5554mulid2d 7917 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  y  =  (/) )  ->  ( 1  x.  [_ z  / 
k ]_ B )  = 
[_ z  /  k ]_ B )
5653, 55eqtrd 2198 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  y  =  (/) )  ->  ( prod_
k  e.  y  B  x.  [_ z  / 
k ]_ B )  = 
[_ z  /  k ]_ B )
5745adantr 274 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  y  =  (/) )  ->  [_ z  /  k ]_ B  e.  S )
5856, 57eqeltrd 2243 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  y  =  (/) )  ->  ( prod_
k  e.  y  B  x.  [_ z  / 
k ]_ B )  e.  S )
5948, 58eqeltrd 2243 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  y  =  (/) )  ->  prod_ k  e.  ( y  u.  {
z } ) B  e.  S )
6059olcd 724 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  y  =  (/) )  ->  ( ( y  u.  { z } )  =  (/)  \/ 
prod_ k  e.  (
y  u.  { z } ) B  e.  S ) )
6160ex 114 . . . . 5  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( y  =  (/)  ->  ( ( y  u.  { z } )  =  (/)  \/  prod_ k  e.  ( y  u. 
{ z } ) B  e.  S ) ) )
6247adantr 274 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  e.  S )  ->  prod_ k  e.  ( y  u. 
{ z } ) B  =  ( prod_
k  e.  y  B  x.  [_ z  / 
k ]_ B ) )
63 fprodcllem.2 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  x.  y
)  e.  S )
6463ralrimivva 2548 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  S  A. y  e.  S  ( x  x.  y
)  e.  S )
65 oveq1 5849 . . . . . . . . . . . . 13  |-  ( x  =  u  ->  (
x  x.  y )  =  ( u  x.  y ) )
6665eleq1d 2235 . . . . . . . . . . . 12  |-  ( x  =  u  ->  (
( x  x.  y
)  e.  S  <->  ( u  x.  y )  e.  S
) )
67 oveq2 5850 . . . . . . . . . . . . 13  |-  ( y  =  v  ->  (
u  x.  y )  =  ( u  x.  v ) )
6867eleq1d 2235 . . . . . . . . . . . 12  |-  ( y  =  v  ->  (
( u  x.  y
)  e.  S  <->  ( u  x.  v )  e.  S
) )
6966, 68cbvral2v 2705 . . . . . . . . . . 11  |-  ( A. x  e.  S  A. y  e.  S  (
x  x.  y )  e.  S  <->  A. u  e.  S  A. v  e.  S  ( u  x.  v )  e.  S
)
7064, 69sylib 121 . . . . . . . . . 10  |-  ( ph  ->  A. u  e.  S  A. v  e.  S  ( u  x.  v
)  e.  S )
7170ad3antrrr 484 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  e.  S )  ->  A. u  e.  S  A. v  e.  S  ( u  x.  v )  e.  S
)
72 simpr 109 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  e.  S )  ->  prod_ k  e.  y  B  e.  S )
7345adantr 274 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  e.  S )  ->  [_ z  /  k ]_ B  e.  S )
74 oveq1 5849 . . . . . . . . . . . 12  |-  ( u  =  prod_ k  e.  y  B  ->  ( u  x.  v )  =  (
prod_ k  e.  y  B  x.  v )
)
7574eleq1d 2235 . . . . . . . . . . 11  |-  ( u  =  prod_ k  e.  y  B  ->  ( (
u  x.  v )  e.  S  <->  ( prod_ k  e.  y  B  x.  v )  e.  S
) )
76 oveq2 5850 . . . . . . . . . . . 12  |-  ( v  =  [_ z  / 
k ]_ B  ->  ( prod_ k  e.  y  B  x.  v )  =  ( prod_ k  e.  y  B  x.  [_ z  /  k ]_ B
) )
7776eleq1d 2235 . . . . . . . . . . 11  |-  ( v  =  [_ z  / 
k ]_ B  ->  (
( prod_ k  e.  y  B  x.  v )  e.  S  <->  ( prod_ k  e.  y  B  x.  [_ z  /  k ]_ B )  e.  S
) )
7875, 77rspc2v 2843 . . . . . . . . . 10  |-  ( (
prod_ k  e.  y  B  e.  S  /\  [_ z  /  k ]_ B  e.  S )  ->  ( A. u  e.  S  A. v  e.  S  ( u  x.  v )  e.  S  ->  ( prod_ k  e.  y  B  x.  [_ z  /  k ]_ B
)  e.  S ) )
7972, 73, 78syl2anc 409 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  e.  S )  ->  ( A. u  e.  S  A. v  e.  S  ( u  x.  v
)  e.  S  -> 
( prod_ k  e.  y  B  x.  [_ z  /  k ]_ B
)  e.  S ) )
8071, 79mpd 13 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  e.  S )  ->  ( prod_ k  e.  y  B  x.  [_ z  / 
k ]_ B )  e.  S )
8162, 80eqeltrd 2243 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  e.  S )  ->  prod_ k  e.  ( y  u. 
{ z } ) B  e.  S )
8281olcd 724 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  e.  S )  ->  (
( y  u.  {
z } )  =  (/)  \/  prod_ k  e.  ( y  u.  { z } ) B  e.  S ) )
8382ex 114 . . . . 5  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( prod_ k  e.  y  B  e.  S  ->  ( ( y  u.  { z } )  =  (/)  \/  prod_ k  e.  ( y  u. 
{ z } ) B  e.  S ) ) )
8461, 83jaod 707 . . . 4  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( ( y  =  (/)  \/  prod_ k  e.  y  B  e.  S )  ->  (
( y  u.  {
z } )  =  (/)  \/  prod_ k  e.  ( y  u.  { z } ) B  e.  S ) ) )
85 fprodcllem.3 . . . 4  |-  ( ph  ->  A  e.  Fin )
866, 10, 14, 18, 20, 84, 85findcard2sd 6858 . . 3  |-  ( ph  ->  ( A  =  (/)  \/ 
prod_ k  e.  A  B  e.  S )
)
8786orcomd 719 . 2  |-  ( ph  ->  ( prod_ k  e.  A  B  e.  S  \/  A  =  (/) ) )
882, 87ecased 1339 1  |-  ( ph  ->  prod_ k  e.  A  B  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 698    = wceq 1343    e. wcel 2136    =/= wne 2336   A.wral 2444   [_csb 3045    \ cdif 3113    u. cun 3114    C_ wss 3116   (/)c0 3409   {csn 3576  (class class class)co 5842   Fincfn 6706   CCcc 7751   1c1 7754    x. cmul 7758   prod_cprod 11491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-proddc 11492
This theorem is referenced by:  fprodcllem  11547
  Copyright terms: Public domain W3C validator