ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodcl2lem Unicode version

Theorem fprodcl2lem 11770
Description: Finite product closure lemma. (Contributed by Scott Fenton, 14-Dec-2017.) (Revised by Jim Kingdon, 17-Aug-2024.)
Hypotheses
Ref Expression
fprodcllem.1  |-  ( ph  ->  S  C_  CC )
fprodcllem.2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  x.  y
)  e.  S )
fprodcllem.3  |-  ( ph  ->  A  e.  Fin )
fprodcllem.4  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  S )
fprodcl2lem.5  |-  ( ph  ->  A  =/=  (/) )
Assertion
Ref Expression
fprodcl2lem  |-  ( ph  ->  prod_ k  e.  A  B  e.  S )
Distinct variable groups:    A, k, x, y    x, B, y    S, k, x, y    ph, k, x, y
Allowed substitution hint:    B( k)

Proof of Theorem fprodcl2lem
Dummy variables  w  z  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fprodcl2lem.5 . . 3  |-  ( ph  ->  A  =/=  (/) )
21neneqd 2388 . 2  |-  ( ph  ->  -.  A  =  (/) )
3 eqeq1 2203 . . . . 5  |-  ( w  =  (/)  ->  ( w  =  (/)  <->  (/)  =  (/) ) )
4 prodeq1 11718 . . . . . 6  |-  ( w  =  (/)  ->  prod_ k  e.  w  B  =  prod_ k  e.  (/)  B )
54eleq1d 2265 . . . . 5  |-  ( w  =  (/)  ->  ( prod_
k  e.  w  B  e.  S  <->  prod_ k  e.  (/)  B  e.  S ) )
63, 5orbi12d 794 . . . 4  |-  ( w  =  (/)  ->  ( ( w  =  (/)  \/  prod_ k  e.  w  B  e.  S )  <->  ( (/)  =  (/)  \/ 
prod_ k  e.  (/)  B  e.  S ) ) )
7 eqeq1 2203 . . . . 5  |-  ( w  =  y  ->  (
w  =  (/)  <->  y  =  (/) ) )
8 prodeq1 11718 . . . . . 6  |-  ( w  =  y  ->  prod_ k  e.  w  B  = 
prod_ k  e.  y  B )
98eleq1d 2265 . . . . 5  |-  ( w  =  y  ->  ( prod_ k  e.  w  B  e.  S  <->  prod_ k  e.  y  B  e.  S
) )
107, 9orbi12d 794 . . . 4  |-  ( w  =  y  ->  (
( w  =  (/)  \/ 
prod_ k  e.  w  B  e.  S )  <->  ( y  =  (/)  \/  prod_ k  e.  y  B  e.  S ) ) )
11 eqeq1 2203 . . . . 5  |-  ( w  =  ( y  u. 
{ z } )  ->  ( w  =  (/) 
<->  ( y  u.  {
z } )  =  (/) ) )
12 prodeq1 11718 . . . . . 6  |-  ( w  =  ( y  u. 
{ z } )  ->  prod_ k  e.  w  B  =  prod_ k  e.  ( y  u.  {
z } ) B )
1312eleq1d 2265 . . . . 5  |-  ( w  =  ( y  u. 
{ z } )  ->  ( prod_ k  e.  w  B  e.  S 
<-> 
prod_ k  e.  (
y  u.  { z } ) B  e.  S ) )
1411, 13orbi12d 794 . . . 4  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( w  =  (/)  \/  prod_ k  e.  w  B  e.  S )  <->  ( (
y  u.  { z } )  =  (/)  \/ 
prod_ k  e.  (
y  u.  { z } ) B  e.  S ) ) )
15 eqeq1 2203 . . . . 5  |-  ( w  =  A  ->  (
w  =  (/)  <->  A  =  (/) ) )
16 prodeq1 11718 . . . . . 6  |-  ( w  =  A  ->  prod_ k  e.  w  B  = 
prod_ k  e.  A  B )
1716eleq1d 2265 . . . . 5  |-  ( w  =  A  ->  ( prod_ k  e.  w  B  e.  S  <->  prod_ k  e.  A  B  e.  S
) )
1815, 17orbi12d 794 . . . 4  |-  ( w  =  A  ->  (
( w  =  (/)  \/ 
prod_ k  e.  w  B  e.  S )  <->  ( A  =  (/)  \/  prod_ k  e.  A  B  e.  S ) ) )
19 eqidd 2197 . . . . 5  |-  ( ph  -> 
(/)  =  (/) )
2019orcd 734 . . . 4  |-  ( ph  ->  ( (/)  =  (/)  \/  prod_ k  e.  (/)  B  e.  S
) )
21 nfcsb1v 3117 . . . . . . . . . 10  |-  F/_ k [_ z  /  k ]_ B
22 simplr 528 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  y  e.  Fin )
23 simprr 531 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  z  e.  ( A  \  y ) )
2423eldifbd 3169 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  -.  z  e.  y )
25 fprodcllem.1 . . . . . . . . . . . 12  |-  ( ph  ->  S  C_  CC )
2625ad3antrrr 492 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  S  C_  CC )
27 simplll 533 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  ph )
28 simplrl 535 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  y  C_  A )
29 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  k  e.  y )
3028, 29sseldd 3184 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  k  e.  A )
31 fprodcllem.4 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  S )
3227, 30, 31syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  B  e.  S )
3326, 32sseldd 3184 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  B  e.  CC )
3425ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  S  C_  CC )
35 simpll 527 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ph )
3623eldifad 3168 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  z  e.  A
)
3731ralrimiva 2570 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. k  e.  A  B  e.  S )
38 nfv 1542 . . . . . . . . . . . . . . 15  |-  F/ z  B  e.  S
3921nfel1 2350 . . . . . . . . . . . . . . 15  |-  F/ k
[_ z  /  k ]_ B  e.  S
40 csbeq1a 3093 . . . . . . . . . . . . . . . 16  |-  ( k  =  z  ->  B  =  [_ z  /  k ]_ B )
4140eleq1d 2265 . . . . . . . . . . . . . . 15  |-  ( k  =  z  ->  ( B  e.  S  <->  [_ z  / 
k ]_ B  e.  S
) )
4238, 39, 41cbvral 2725 . . . . . . . . . . . . . 14  |-  ( A. k  e.  A  B  e.  S  <->  A. z  e.  A  [_ z  /  k ]_ B  e.  S )
4337, 42sylib 122 . . . . . . . . . . . . 13  |-  ( ph  ->  A. z  e.  A  [_ z  /  k ]_ B  e.  S )
4443r19.21bi 2585 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  A )  ->  [_ z  /  k ]_ B  e.  S )
4535, 36, 44syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  [_ z  /  k ]_ B  e.  S
)
4634, 45sseldd 3184 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  [_ z  /  k ]_ B  e.  CC )
4721, 22, 23, 24, 33, 46, 40fprodunsn 11769 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  prod_ k  e.  ( y  u.  { z } ) B  =  ( prod_ k  e.  y  B  x.  [_ z  /  k ]_ B
) )
4847adantr 276 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  y  =  (/) )  ->  prod_ k  e.  ( y  u.  {
z } ) B  =  ( prod_ k  e.  y  B  x.  [_ z  /  k ]_ B ) )
49 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  y  =  (/) )  ->  y  =  (/) )
5049prodeq1d 11729 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  y  =  (/) )  ->  prod_ k  e.  y  B  =  prod_ k  e.  (/)  B )
51 prod0 11750 . . . . . . . . . . . 12  |-  prod_ k  e.  (/)  B  =  1
5250, 51eqtrdi 2245 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  y  =  (/) )  ->  prod_ k  e.  y  B  = 
1 )
5352oveq1d 5937 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  y  =  (/) )  ->  ( prod_
k  e.  y  B  x.  [_ z  / 
k ]_ B )  =  ( 1  x.  [_ z  /  k ]_ B
) )
5446adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  y  =  (/) )  ->  [_ z  /  k ]_ B  e.  CC )
5554mulid2d 8045 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  y  =  (/) )  ->  ( 1  x.  [_ z  / 
k ]_ B )  = 
[_ z  /  k ]_ B )
5653, 55eqtrd 2229 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  y  =  (/) )  ->  ( prod_
k  e.  y  B  x.  [_ z  / 
k ]_ B )  = 
[_ z  /  k ]_ B )
5745adantr 276 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  y  =  (/) )  ->  [_ z  /  k ]_ B  e.  S )
5856, 57eqeltrd 2273 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  y  =  (/) )  ->  ( prod_
k  e.  y  B  x.  [_ z  / 
k ]_ B )  e.  S )
5948, 58eqeltrd 2273 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  y  =  (/) )  ->  prod_ k  e.  ( y  u.  {
z } ) B  e.  S )
6059olcd 735 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  y  =  (/) )  ->  ( ( y  u.  { z } )  =  (/)  \/ 
prod_ k  e.  (
y  u.  { z } ) B  e.  S ) )
6160ex 115 . . . . 5  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( y  =  (/)  ->  ( ( y  u.  { z } )  =  (/)  \/  prod_ k  e.  ( y  u. 
{ z } ) B  e.  S ) ) )
6247adantr 276 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  e.  S )  ->  prod_ k  e.  ( y  u. 
{ z } ) B  =  ( prod_
k  e.  y  B  x.  [_ z  / 
k ]_ B ) )
63 fprodcllem.2 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  x.  y
)  e.  S )
6463ralrimivva 2579 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  S  A. y  e.  S  ( x  x.  y
)  e.  S )
65 oveq1 5929 . . . . . . . . . . . . 13  |-  ( x  =  u  ->  (
x  x.  y )  =  ( u  x.  y ) )
6665eleq1d 2265 . . . . . . . . . . . 12  |-  ( x  =  u  ->  (
( x  x.  y
)  e.  S  <->  ( u  x.  y )  e.  S
) )
67 oveq2 5930 . . . . . . . . . . . . 13  |-  ( y  =  v  ->  (
u  x.  y )  =  ( u  x.  v ) )
6867eleq1d 2265 . . . . . . . . . . . 12  |-  ( y  =  v  ->  (
( u  x.  y
)  e.  S  <->  ( u  x.  v )  e.  S
) )
6966, 68cbvral2v 2742 . . . . . . . . . . 11  |-  ( A. x  e.  S  A. y  e.  S  (
x  x.  y )  e.  S  <->  A. u  e.  S  A. v  e.  S  ( u  x.  v )  e.  S
)
7064, 69sylib 122 . . . . . . . . . 10  |-  ( ph  ->  A. u  e.  S  A. v  e.  S  ( u  x.  v
)  e.  S )
7170ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  e.  S )  ->  A. u  e.  S  A. v  e.  S  ( u  x.  v )  e.  S
)
72 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  e.  S )  ->  prod_ k  e.  y  B  e.  S )
7345adantr 276 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  e.  S )  ->  [_ z  /  k ]_ B  e.  S )
74 oveq1 5929 . . . . . . . . . . . 12  |-  ( u  =  prod_ k  e.  y  B  ->  ( u  x.  v )  =  (
prod_ k  e.  y  B  x.  v )
)
7574eleq1d 2265 . . . . . . . . . . 11  |-  ( u  =  prod_ k  e.  y  B  ->  ( (
u  x.  v )  e.  S  <->  ( prod_ k  e.  y  B  x.  v )  e.  S
) )
76 oveq2 5930 . . . . . . . . . . . 12  |-  ( v  =  [_ z  / 
k ]_ B  ->  ( prod_ k  e.  y  B  x.  v )  =  ( prod_ k  e.  y  B  x.  [_ z  /  k ]_ B
) )
7776eleq1d 2265 . . . . . . . . . . 11  |-  ( v  =  [_ z  / 
k ]_ B  ->  (
( prod_ k  e.  y  B  x.  v )  e.  S  <->  ( prod_ k  e.  y  B  x.  [_ z  /  k ]_ B )  e.  S
) )
7875, 77rspc2v 2881 . . . . . . . . . 10  |-  ( (
prod_ k  e.  y  B  e.  S  /\  [_ z  /  k ]_ B  e.  S )  ->  ( A. u  e.  S  A. v  e.  S  ( u  x.  v )  e.  S  ->  ( prod_ k  e.  y  B  x.  [_ z  /  k ]_ B
)  e.  S ) )
7972, 73, 78syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  e.  S )  ->  ( A. u  e.  S  A. v  e.  S  ( u  x.  v
)  e.  S  -> 
( prod_ k  e.  y  B  x.  [_ z  /  k ]_ B
)  e.  S ) )
8071, 79mpd 13 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  e.  S )  ->  ( prod_ k  e.  y  B  x.  [_ z  / 
k ]_ B )  e.  S )
8162, 80eqeltrd 2273 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  e.  S )  ->  prod_ k  e.  ( y  u. 
{ z } ) B  e.  S )
8281olcd 735 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  e.  S )  ->  (
( y  u.  {
z } )  =  (/)  \/  prod_ k  e.  ( y  u.  { z } ) B  e.  S ) )
8382ex 115 . . . . 5  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( prod_ k  e.  y  B  e.  S  ->  ( ( y  u.  { z } )  =  (/)  \/  prod_ k  e.  ( y  u. 
{ z } ) B  e.  S ) ) )
8461, 83jaod 718 . . . 4  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( ( y  =  (/)  \/  prod_ k  e.  y  B  e.  S )  ->  (
( y  u.  {
z } )  =  (/)  \/  prod_ k  e.  ( y  u.  { z } ) B  e.  S ) ) )
85 fprodcllem.3 . . . 4  |-  ( ph  ->  A  e.  Fin )
866, 10, 14, 18, 20, 84, 85findcard2sd 6953 . . 3  |-  ( ph  ->  ( A  =  (/)  \/ 
prod_ k  e.  A  B  e.  S )
)
8786orcomd 730 . 2  |-  ( ph  ->  ( prod_ k  e.  A  B  e.  S  \/  A  =  (/) ) )
882, 87ecased 1360 1  |-  ( ph  ->  prod_ k  e.  A  B  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364    e. wcel 2167    =/= wne 2367   A.wral 2475   [_csb 3084    \ cdif 3154    u. cun 3155    C_ wss 3157   (/)c0 3450   {csn 3622  (class class class)co 5922   Fincfn 6799   CCcc 7877   1c1 7880    x. cmul 7884   prod_cprod 11715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-proddc 11716
This theorem is referenced by:  fprodcllem  11771
  Copyright terms: Public domain W3C validator