ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodcl2lem Unicode version

Theorem fprodcl2lem 11568
Description: Finite product closure lemma. (Contributed by Scott Fenton, 14-Dec-2017.) (Revised by Jim Kingdon, 17-Aug-2024.)
Hypotheses
Ref Expression
fprodcllem.1  |-  ( ph  ->  S  C_  CC )
fprodcllem.2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  x.  y
)  e.  S )
fprodcllem.3  |-  ( ph  ->  A  e.  Fin )
fprodcllem.4  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  S )
fprodcl2lem.5  |-  ( ph  ->  A  =/=  (/) )
Assertion
Ref Expression
fprodcl2lem  |-  ( ph  ->  prod_ k  e.  A  B  e.  S )
Distinct variable groups:    A, k, x, y    x, B, y    S, k, x, y    ph, k, x, y
Allowed substitution hint:    B( k)

Proof of Theorem fprodcl2lem
Dummy variables  w  z  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fprodcl2lem.5 . . 3  |-  ( ph  ->  A  =/=  (/) )
21neneqd 2361 . 2  |-  ( ph  ->  -.  A  =  (/) )
3 eqeq1 2177 . . . . 5  |-  ( w  =  (/)  ->  ( w  =  (/)  <->  (/)  =  (/) ) )
4 prodeq1 11516 . . . . . 6  |-  ( w  =  (/)  ->  prod_ k  e.  w  B  =  prod_ k  e.  (/)  B )
54eleq1d 2239 . . . . 5  |-  ( w  =  (/)  ->  ( prod_
k  e.  w  B  e.  S  <->  prod_ k  e.  (/)  B  e.  S ) )
63, 5orbi12d 788 . . . 4  |-  ( w  =  (/)  ->  ( ( w  =  (/)  \/  prod_ k  e.  w  B  e.  S )  <->  ( (/)  =  (/)  \/ 
prod_ k  e.  (/)  B  e.  S ) ) )
7 eqeq1 2177 . . . . 5  |-  ( w  =  y  ->  (
w  =  (/)  <->  y  =  (/) ) )
8 prodeq1 11516 . . . . . 6  |-  ( w  =  y  ->  prod_ k  e.  w  B  = 
prod_ k  e.  y  B )
98eleq1d 2239 . . . . 5  |-  ( w  =  y  ->  ( prod_ k  e.  w  B  e.  S  <->  prod_ k  e.  y  B  e.  S
) )
107, 9orbi12d 788 . . . 4  |-  ( w  =  y  ->  (
( w  =  (/)  \/ 
prod_ k  e.  w  B  e.  S )  <->  ( y  =  (/)  \/  prod_ k  e.  y  B  e.  S ) ) )
11 eqeq1 2177 . . . . 5  |-  ( w  =  ( y  u. 
{ z } )  ->  ( w  =  (/) 
<->  ( y  u.  {
z } )  =  (/) ) )
12 prodeq1 11516 . . . . . 6  |-  ( w  =  ( y  u. 
{ z } )  ->  prod_ k  e.  w  B  =  prod_ k  e.  ( y  u.  {
z } ) B )
1312eleq1d 2239 . . . . 5  |-  ( w  =  ( y  u. 
{ z } )  ->  ( prod_ k  e.  w  B  e.  S 
<-> 
prod_ k  e.  (
y  u.  { z } ) B  e.  S ) )
1411, 13orbi12d 788 . . . 4  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( w  =  (/)  \/  prod_ k  e.  w  B  e.  S )  <->  ( (
y  u.  { z } )  =  (/)  \/ 
prod_ k  e.  (
y  u.  { z } ) B  e.  S ) ) )
15 eqeq1 2177 . . . . 5  |-  ( w  =  A  ->  (
w  =  (/)  <->  A  =  (/) ) )
16 prodeq1 11516 . . . . . 6  |-  ( w  =  A  ->  prod_ k  e.  w  B  = 
prod_ k  e.  A  B )
1716eleq1d 2239 . . . . 5  |-  ( w  =  A  ->  ( prod_ k  e.  w  B  e.  S  <->  prod_ k  e.  A  B  e.  S
) )
1815, 17orbi12d 788 . . . 4  |-  ( w  =  A  ->  (
( w  =  (/)  \/ 
prod_ k  e.  w  B  e.  S )  <->  ( A  =  (/)  \/  prod_ k  e.  A  B  e.  S ) ) )
19 eqidd 2171 . . . . 5  |-  ( ph  -> 
(/)  =  (/) )
2019orcd 728 . . . 4  |-  ( ph  ->  ( (/)  =  (/)  \/  prod_ k  e.  (/)  B  e.  S
) )
21 nfcsb1v 3082 . . . . . . . . . 10  |-  F/_ k [_ z  /  k ]_ B
22 simplr 525 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  y  e.  Fin )
23 simprr 527 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  z  e.  ( A  \  y ) )
2423eldifbd 3133 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  -.  z  e.  y )
25 fprodcllem.1 . . . . . . . . . . . 12  |-  ( ph  ->  S  C_  CC )
2625ad3antrrr 489 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  S  C_  CC )
27 simplll 528 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  ph )
28 simplrl 530 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  y  C_  A )
29 simpr 109 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  k  e.  y )
3028, 29sseldd 3148 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  k  e.  A )
31 fprodcllem.4 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  S )
3227, 30, 31syl2anc 409 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  B  e.  S )
3326, 32sseldd 3148 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  B  e.  CC )
3425ad2antrr 485 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  S  C_  CC )
35 simpll 524 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ph )
3623eldifad 3132 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  z  e.  A
)
3731ralrimiva 2543 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. k  e.  A  B  e.  S )
38 nfv 1521 . . . . . . . . . . . . . . 15  |-  F/ z  B  e.  S
3921nfel1 2323 . . . . . . . . . . . . . . 15  |-  F/ k
[_ z  /  k ]_ B  e.  S
40 csbeq1a 3058 . . . . . . . . . . . . . . . 16  |-  ( k  =  z  ->  B  =  [_ z  /  k ]_ B )
4140eleq1d 2239 . . . . . . . . . . . . . . 15  |-  ( k  =  z  ->  ( B  e.  S  <->  [_ z  / 
k ]_ B  e.  S
) )
4238, 39, 41cbvral 2692 . . . . . . . . . . . . . 14  |-  ( A. k  e.  A  B  e.  S  <->  A. z  e.  A  [_ z  /  k ]_ B  e.  S )
4337, 42sylib 121 . . . . . . . . . . . . 13  |-  ( ph  ->  A. z  e.  A  [_ z  /  k ]_ B  e.  S )
4443r19.21bi 2558 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  A )  ->  [_ z  /  k ]_ B  e.  S )
4535, 36, 44syl2anc 409 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  [_ z  /  k ]_ B  e.  S
)
4634, 45sseldd 3148 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  [_ z  /  k ]_ B  e.  CC )
4721, 22, 23, 24, 33, 46, 40fprodunsn 11567 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  prod_ k  e.  ( y  u.  { z } ) B  =  ( prod_ k  e.  y  B  x.  [_ z  /  k ]_ B
) )
4847adantr 274 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  y  =  (/) )  ->  prod_ k  e.  ( y  u.  {
z } ) B  =  ( prod_ k  e.  y  B  x.  [_ z  /  k ]_ B ) )
49 simpr 109 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  y  =  (/) )  ->  y  =  (/) )
5049prodeq1d 11527 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  y  =  (/) )  ->  prod_ k  e.  y  B  =  prod_ k  e.  (/)  B )
51 prod0 11548 . . . . . . . . . . . 12  |-  prod_ k  e.  (/)  B  =  1
5250, 51eqtrdi 2219 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  y  =  (/) )  ->  prod_ k  e.  y  B  = 
1 )
5352oveq1d 5868 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  y  =  (/) )  ->  ( prod_
k  e.  y  B  x.  [_ z  / 
k ]_ B )  =  ( 1  x.  [_ z  /  k ]_ B
) )
5446adantr 274 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  y  =  (/) )  ->  [_ z  /  k ]_ B  e.  CC )
5554mulid2d 7938 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  y  =  (/) )  ->  ( 1  x.  [_ z  / 
k ]_ B )  = 
[_ z  /  k ]_ B )
5653, 55eqtrd 2203 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  y  =  (/) )  ->  ( prod_
k  e.  y  B  x.  [_ z  / 
k ]_ B )  = 
[_ z  /  k ]_ B )
5745adantr 274 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  y  =  (/) )  ->  [_ z  /  k ]_ B  e.  S )
5856, 57eqeltrd 2247 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  y  =  (/) )  ->  ( prod_
k  e.  y  B  x.  [_ z  / 
k ]_ B )  e.  S )
5948, 58eqeltrd 2247 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  y  =  (/) )  ->  prod_ k  e.  ( y  u.  {
z } ) B  e.  S )
6059olcd 729 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  y  =  (/) )  ->  ( ( y  u.  { z } )  =  (/)  \/ 
prod_ k  e.  (
y  u.  { z } ) B  e.  S ) )
6160ex 114 . . . . 5  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( y  =  (/)  ->  ( ( y  u.  { z } )  =  (/)  \/  prod_ k  e.  ( y  u. 
{ z } ) B  e.  S ) ) )
6247adantr 274 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  e.  S )  ->  prod_ k  e.  ( y  u. 
{ z } ) B  =  ( prod_
k  e.  y  B  x.  [_ z  / 
k ]_ B ) )
63 fprodcllem.2 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  x.  y
)  e.  S )
6463ralrimivva 2552 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  S  A. y  e.  S  ( x  x.  y
)  e.  S )
65 oveq1 5860 . . . . . . . . . . . . 13  |-  ( x  =  u  ->  (
x  x.  y )  =  ( u  x.  y ) )
6665eleq1d 2239 . . . . . . . . . . . 12  |-  ( x  =  u  ->  (
( x  x.  y
)  e.  S  <->  ( u  x.  y )  e.  S
) )
67 oveq2 5861 . . . . . . . . . . . . 13  |-  ( y  =  v  ->  (
u  x.  y )  =  ( u  x.  v ) )
6867eleq1d 2239 . . . . . . . . . . . 12  |-  ( y  =  v  ->  (
( u  x.  y
)  e.  S  <->  ( u  x.  v )  e.  S
) )
6966, 68cbvral2v 2709 . . . . . . . . . . 11  |-  ( A. x  e.  S  A. y  e.  S  (
x  x.  y )  e.  S  <->  A. u  e.  S  A. v  e.  S  ( u  x.  v )  e.  S
)
7064, 69sylib 121 . . . . . . . . . 10  |-  ( ph  ->  A. u  e.  S  A. v  e.  S  ( u  x.  v
)  e.  S )
7170ad3antrrr 489 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  e.  S )  ->  A. u  e.  S  A. v  e.  S  ( u  x.  v )  e.  S
)
72 simpr 109 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  e.  S )  ->  prod_ k  e.  y  B  e.  S )
7345adantr 274 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  e.  S )  ->  [_ z  /  k ]_ B  e.  S )
74 oveq1 5860 . . . . . . . . . . . 12  |-  ( u  =  prod_ k  e.  y  B  ->  ( u  x.  v )  =  (
prod_ k  e.  y  B  x.  v )
)
7574eleq1d 2239 . . . . . . . . . . 11  |-  ( u  =  prod_ k  e.  y  B  ->  ( (
u  x.  v )  e.  S  <->  ( prod_ k  e.  y  B  x.  v )  e.  S
) )
76 oveq2 5861 . . . . . . . . . . . 12  |-  ( v  =  [_ z  / 
k ]_ B  ->  ( prod_ k  e.  y  B  x.  v )  =  ( prod_ k  e.  y  B  x.  [_ z  /  k ]_ B
) )
7776eleq1d 2239 . . . . . . . . . . 11  |-  ( v  =  [_ z  / 
k ]_ B  ->  (
( prod_ k  e.  y  B  x.  v )  e.  S  <->  ( prod_ k  e.  y  B  x.  [_ z  /  k ]_ B )  e.  S
) )
7875, 77rspc2v 2847 . . . . . . . . . 10  |-  ( (
prod_ k  e.  y  B  e.  S  /\  [_ z  /  k ]_ B  e.  S )  ->  ( A. u  e.  S  A. v  e.  S  ( u  x.  v )  e.  S  ->  ( prod_ k  e.  y  B  x.  [_ z  /  k ]_ B
)  e.  S ) )
7972, 73, 78syl2anc 409 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  e.  S )  ->  ( A. u  e.  S  A. v  e.  S  ( u  x.  v
)  e.  S  -> 
( prod_ k  e.  y  B  x.  [_ z  /  k ]_ B
)  e.  S ) )
8071, 79mpd 13 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  e.  S )  ->  ( prod_ k  e.  y  B  x.  [_ z  / 
k ]_ B )  e.  S )
8162, 80eqeltrd 2247 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  e.  S )  ->  prod_ k  e.  ( y  u. 
{ z } ) B  e.  S )
8281olcd 729 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  prod_ k  e.  y  B  e.  S )  ->  (
( y  u.  {
z } )  =  (/)  \/  prod_ k  e.  ( y  u.  { z } ) B  e.  S ) )
8382ex 114 . . . . 5  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( prod_ k  e.  y  B  e.  S  ->  ( ( y  u.  { z } )  =  (/)  \/  prod_ k  e.  ( y  u. 
{ z } ) B  e.  S ) ) )
8461, 83jaod 712 . . . 4  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( ( y  =  (/)  \/  prod_ k  e.  y  B  e.  S )  ->  (
( y  u.  {
z } )  =  (/)  \/  prod_ k  e.  ( y  u.  { z } ) B  e.  S ) ) )
85 fprodcllem.3 . . . 4  |-  ( ph  ->  A  e.  Fin )
866, 10, 14, 18, 20, 84, 85findcard2sd 6870 . . 3  |-  ( ph  ->  ( A  =  (/)  \/ 
prod_ k  e.  A  B  e.  S )
)
8786orcomd 724 . 2  |-  ( ph  ->  ( prod_ k  e.  A  B  e.  S  \/  A  =  (/) ) )
882, 87ecased 1344 1  |-  ( ph  ->  prod_ k  e.  A  B  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 703    = wceq 1348    e. wcel 2141    =/= wne 2340   A.wral 2448   [_csb 3049    \ cdif 3118    u. cun 3119    C_ wss 3121   (/)c0 3414   {csn 3583  (class class class)co 5853   Fincfn 6718   CCcc 7772   1c1 7775    x. cmul 7779   prod_cprod 11513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-oadd 6399  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-seqfrec 10402  df-exp 10476  df-ihash 10710  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-proddc 11514
This theorem is referenced by:  fprodcllem  11569
  Copyright terms: Public domain W3C validator