Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > seq3distr | Unicode version |
Description: The distributive property for series. (Contributed by Jim Kingdon, 10-Oct-2022.) |
Ref | Expression |
---|---|
seq3distr.1 | |
seq3distr.2 | |
seq3distr.3 | |
seq3distr.4 | |
seq3distr.5 | |
seq3distr.t | |
seq3distr.c |
Ref | Expression |
---|---|
seq3distr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seq3distr.1 | . . 3 | |
2 | seq3distr.4 | . . 3 | |
3 | seq3distr.3 | . . 3 | |
4 | seq3distr.2 | . . . 4 | |
5 | seq3distr.c | . . . . . . 7 | |
6 | 5 | adantr 274 | . . . . . 6 |
7 | seq3distr.t | . . . . . . . . 9 | |
8 | 7 | ralrimivva 2552 | . . . . . . . 8 |
9 | oveq1 5858 | . . . . . . . . . 10 | |
10 | 9 | eleq1d 2239 | . . . . . . . . 9 |
11 | oveq2 5859 | . . . . . . . . . 10 | |
12 | 11 | eleq1d 2239 | . . . . . . . . 9 |
13 | 10, 12 | cbvral2v 2709 | . . . . . . . 8 |
14 | 8, 13 | sylib 121 | . . . . . . 7 |
15 | 14 | adantr 274 | . . . . . 6 |
16 | oveq1 5858 | . . . . . . . 8 | |
17 | 16 | eleq1d 2239 | . . . . . . 7 |
18 | oveq2 5859 | . . . . . . . 8 | |
19 | 18 | eleq1d 2239 | . . . . . . 7 |
20 | 17, 19 | rspc2va 2848 | . . . . . 6 |
21 | 6, 1, 15, 20 | syl21anc 1232 | . . . . 5 |
22 | oveq2 5859 | . . . . . 6 | |
23 | eqid 2170 | . . . . . 6 | |
24 | 22, 23 | fvmptg 5570 | . . . . 5 |
25 | 1, 21, 24 | syl2anc 409 | . . . 4 |
26 | simprl 526 | . . . . . 6 | |
27 | oveq2 5859 | . . . . . . . . 9 | |
28 | 27 | eleq1d 2239 | . . . . . . . 8 |
29 | 17, 28 | rspc2va 2848 | . . . . . . 7 |
30 | 6, 26, 15, 29 | syl21anc 1232 | . . . . . 6 |
31 | oveq2 5859 | . . . . . . 7 | |
32 | 31, 23 | fvmptg 5570 | . . . . . 6 |
33 | 26, 30, 32 | syl2anc 409 | . . . . 5 |
34 | simprr 527 | . . . . . 6 | |
35 | oveq2 5859 | . . . . . . . . 9 | |
36 | 35 | eleq1d 2239 | . . . . . . . 8 |
37 | 17, 36 | rspc2va 2848 | . . . . . . 7 |
38 | 6, 34, 15, 37 | syl21anc 1232 | . . . . . 6 |
39 | oveq2 5859 | . . . . . . 7 | |
40 | 39, 23 | fvmptg 5570 | . . . . . 6 |
41 | 34, 38, 40 | syl2anc 409 | . . . . 5 |
42 | 33, 41 | oveq12d 5869 | . . . 4 |
43 | 4, 25, 42 | 3eqtr4d 2213 | . . 3 |
44 | 5 | adantr 274 | . . . . . 6 |
45 | 14 | adantr 274 | . . . . . 6 |
46 | oveq2 5859 | . . . . . . . 8 | |
47 | 46 | eleq1d 2239 | . . . . . . 7 |
48 | 17, 47 | rspc2va 2848 | . . . . . 6 |
49 | 44, 2, 45, 48 | syl21anc 1232 | . . . . 5 |
50 | oveq2 5859 | . . . . . 6 | |
51 | 50, 23 | fvmptg 5570 | . . . . 5 |
52 | 2, 49, 51 | syl2anc 409 | . . . 4 |
53 | seq3distr.5 | . . . 4 | |
54 | 52, 53 | eqtr4d 2206 | . . 3 |
55 | 53, 49 | eqeltrd 2247 | . . 3 |
56 | 1, 2, 3, 43, 54, 55, 1 | seq3homo 10459 | . 2 |
57 | eqid 2170 | . . . . 5 | |
58 | eluzel2 9485 | . . . . . 6 | |
59 | 3, 58 | syl 14 | . . . . 5 |
60 | 57, 59, 2, 1 | seqf 10410 | . . . 4 |
61 | 60, 3 | ffvelrnd 5630 | . . 3 |
62 | 7, 5, 61 | caovcld 6004 | . . 3 |
63 | oveq2 5859 | . . . 4 | |
64 | 63, 23 | fvmptg 5570 | . . 3 |
65 | 61, 62, 64 | syl2anc 409 | . 2 |
66 | 56, 65 | eqtr3d 2205 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 wral 2448 cmpt 4048 cfv 5196 (class class class)co 5851 cz 9205 cuz 9480 cseq 10394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 ax-cnex 7858 ax-resscn 7859 ax-1cn 7860 ax-1re 7861 ax-icn 7862 ax-addcl 7863 ax-addrcl 7864 ax-mulcl 7865 ax-addcom 7867 ax-addass 7869 ax-distr 7871 ax-i2m1 7872 ax-0lt1 7873 ax-0id 7875 ax-rnegex 7876 ax-cnre 7878 ax-pre-ltirr 7879 ax-pre-ltwlin 7880 ax-pre-lttrn 7881 ax-pre-ltadd 7883 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-iord 4349 df-on 4351 df-ilim 4352 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-riota 5807 df-ov 5854 df-oprab 5855 df-mpo 5856 df-1st 6117 df-2nd 6118 df-recs 6282 df-frec 6368 df-pnf 7949 df-mnf 7950 df-xr 7951 df-ltxr 7952 df-le 7953 df-sub 8085 df-neg 8086 df-inn 8872 df-n0 9129 df-z 9206 df-uz 9481 df-seqfrec 10395 |
This theorem is referenced by: isermulc2 11296 fsummulc2 11404 |
Copyright terms: Public domain | W3C validator |