ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3distr Unicode version

Theorem seq3distr 10543
Description: The distributive property for series. (Contributed by Jim Kingdon, 10-Oct-2022.)
Hypotheses
Ref Expression
seq3distr.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
seq3distr.2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( C T ( x  .+  y ) )  =  ( ( C T x ) 
.+  ( C T y ) ) )
seq3distr.3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
seq3distr.4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
seq3distr.5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  =  ( C T ( G `
 x ) ) )
seq3distr.t  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x T y )  e.  S )
seq3distr.c  |-  ( ph  ->  C  e.  S )
Assertion
Ref Expression
seq3distr  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  =  ( C T (  seq M (  .+  ,  G ) `  N
) ) )
Distinct variable groups:    x,  .+ , y    x, C, y    x, F, y    x, G, y   
x, M, y    x, N, y    x, S, y   
x, T, y    ph, x, y

Proof of Theorem seq3distr
Dummy variables  b  z  a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seq3distr.1 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
2 seq3distr.4 . . 3  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
3 seq3distr.3 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
4 seq3distr.2 . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( C T ( x  .+  y ) )  =  ( ( C T x ) 
.+  ( C T y ) ) )
5 seq3distr.c . . . . . . 7  |-  ( ph  ->  C  e.  S )
65adantr 276 . . . . . 6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  C  e.  S )
7 seq3distr.t . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x T y )  e.  S )
87ralrimivva 2572 . . . . . . . 8  |-  ( ph  ->  A. x  e.  S  A. y  e.  S  ( x T y )  e.  S )
9 oveq1 5902 . . . . . . . . . 10  |-  ( x  =  a  ->  (
x T y )  =  ( a T y ) )
109eleq1d 2258 . . . . . . . . 9  |-  ( x  =  a  ->  (
( x T y )  e.  S  <->  ( a T y )  e.  S ) )
11 oveq2 5903 . . . . . . . . . 10  |-  ( y  =  b  ->  (
a T y )  =  ( a T b ) )
1211eleq1d 2258 . . . . . . . . 9  |-  ( y  =  b  ->  (
( a T y )  e.  S  <->  ( a T b )  e.  S ) )
1310, 12cbvral2v 2731 . . . . . . . 8  |-  ( A. x  e.  S  A. y  e.  S  (
x T y )  e.  S  <->  A. a  e.  S  A. b  e.  S  ( a T b )  e.  S )
148, 13sylib 122 . . . . . . 7  |-  ( ph  ->  A. a  e.  S  A. b  e.  S  ( a T b )  e.  S )
1514adantr 276 . . . . . 6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  A. a  e.  S  A. b  e.  S  ( a T b )  e.  S )
16 oveq1 5902 . . . . . . . 8  |-  ( a  =  C  ->  (
a T b )  =  ( C T b ) )
1716eleq1d 2258 . . . . . . 7  |-  ( a  =  C  ->  (
( a T b )  e.  S  <->  ( C T b )  e.  S ) )
18 oveq2 5903 . . . . . . . 8  |-  ( b  =  ( x  .+  y )  ->  ( C T b )  =  ( C T ( x  .+  y ) ) )
1918eleq1d 2258 . . . . . . 7  |-  ( b  =  ( x  .+  y )  ->  (
( C T b )  e.  S  <->  ( C T ( x  .+  y ) )  e.  S ) )
2017, 19rspc2va 2870 . . . . . 6  |-  ( ( ( C  e.  S  /\  ( x  .+  y
)  e.  S )  /\  A. a  e.  S  A. b  e.  S  ( a T b )  e.  S
)  ->  ( C T ( x  .+  y ) )  e.  S )
216, 1, 15, 20syl21anc 1248 . . . . 5  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( C T ( x  .+  y ) )  e.  S )
22 oveq2 5903 . . . . . 6  |-  ( z  =  ( x  .+  y )  ->  ( C T z )  =  ( C T ( x  .+  y ) ) )
23 eqid 2189 . . . . . 6  |-  ( z  e.  S  |->  ( C T z ) )  =  ( z  e.  S  |->  ( C T z ) )
2422, 23fvmptg 5612 . . . . 5  |-  ( ( ( x  .+  y
)  e.  S  /\  ( C T ( x 
.+  y ) )  e.  S )  -> 
( ( z  e.  S  |->  ( C T z ) ) `  ( x  .+  y ) )  =  ( C T ( x  .+  y ) ) )
251, 21, 24syl2anc 411 . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( ( z  e.  S  |->  ( C T z ) ) `  ( x  .+  y ) )  =  ( C T ( x  .+  y ) ) )
26 simprl 529 . . . . . 6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  x  e.  S )
27 oveq2 5903 . . . . . . . . 9  |-  ( b  =  x  ->  ( C T b )  =  ( C T x ) )
2827eleq1d 2258 . . . . . . . 8  |-  ( b  =  x  ->  (
( C T b )  e.  S  <->  ( C T x )  e.  S ) )
2917, 28rspc2va 2870 . . . . . . 7  |-  ( ( ( C  e.  S  /\  x  e.  S
)  /\  A. a  e.  S  A. b  e.  S  ( a T b )  e.  S )  ->  ( C T x )  e.  S )
306, 26, 15, 29syl21anc 1248 . . . . . 6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( C T x )  e.  S )
31 oveq2 5903 . . . . . . 7  |-  ( z  =  x  ->  ( C T z )  =  ( C T x ) )
3231, 23fvmptg 5612 . . . . . 6  |-  ( ( x  e.  S  /\  ( C T x )  e.  S )  -> 
( ( z  e.  S  |->  ( C T z ) ) `  x )  =  ( C T x ) )
3326, 30, 32syl2anc 411 . . . . 5  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( ( z  e.  S  |->  ( C T z ) ) `  x )  =  ( C T x ) )
34 simprr 531 . . . . . 6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
y  e.  S )
35 oveq2 5903 . . . . . . . . 9  |-  ( b  =  y  ->  ( C T b )  =  ( C T y ) )
3635eleq1d 2258 . . . . . . . 8  |-  ( b  =  y  ->  (
( C T b )  e.  S  <->  ( C T y )  e.  S ) )
3717, 36rspc2va 2870 . . . . . . 7  |-  ( ( ( C  e.  S  /\  y  e.  S
)  /\  A. a  e.  S  A. b  e.  S  ( a T b )  e.  S )  ->  ( C T y )  e.  S )
386, 34, 15, 37syl21anc 1248 . . . . . 6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( C T y )  e.  S )
39 oveq2 5903 . . . . . . 7  |-  ( z  =  y  ->  ( C T z )  =  ( C T y ) )
4039, 23fvmptg 5612 . . . . . 6  |-  ( ( y  e.  S  /\  ( C T y )  e.  S )  -> 
( ( z  e.  S  |->  ( C T z ) ) `  y )  =  ( C T y ) )
4134, 38, 40syl2anc 411 . . . . 5  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( ( z  e.  S  |->  ( C T z ) ) `  y )  =  ( C T y ) )
4233, 41oveq12d 5913 . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( ( ( z  e.  S  |->  ( C T z ) ) `
 x )  .+  ( ( z  e.  S  |->  ( C T z ) ) `  y ) )  =  ( ( C T x )  .+  ( C T y ) ) )
434, 25, 423eqtr4d 2232 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( ( z  e.  S  |->  ( C T z ) ) `  ( x  .+  y ) )  =  ( ( ( z  e.  S  |->  ( C T z ) ) `  x
)  .+  ( (
z  e.  S  |->  ( C T z ) ) `  y ) ) )
445adantr 276 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  C  e.  S )
4514adantr 276 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  A. a  e.  S  A. b  e.  S  ( a T b )  e.  S )
46 oveq2 5903 . . . . . . . 8  |-  ( b  =  ( G `  x )  ->  ( C T b )  =  ( C T ( G `  x ) ) )
4746eleq1d 2258 . . . . . . 7  |-  ( b  =  ( G `  x )  ->  (
( C T b )  e.  S  <->  ( C T ( G `  x ) )  e.  S ) )
4817, 47rspc2va 2870 . . . . . 6  |-  ( ( ( C  e.  S  /\  ( G `  x
)  e.  S )  /\  A. a  e.  S  A. b  e.  S  ( a T b )  e.  S
)  ->  ( C T ( G `  x ) )  e.  S )
4944, 2, 45, 48syl21anc 1248 . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( C T ( G `  x ) )  e.  S )
50 oveq2 5903 . . . . . 6  |-  ( z  =  ( G `  x )  ->  ( C T z )  =  ( C T ( G `  x ) ) )
5150, 23fvmptg 5612 . . . . 5  |-  ( ( ( G `  x
)  e.  S  /\  ( C T ( G `
 x ) )  e.  S )  -> 
( ( z  e.  S  |->  ( C T z ) ) `  ( G `  x ) )  =  ( C T ( G `  x ) ) )
522, 49, 51syl2anc 411 . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( (
z  e.  S  |->  ( C T z ) ) `  ( G `
 x ) )  =  ( C T ( G `  x
) ) )
53 seq3distr.5 . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  =  ( C T ( G `
 x ) ) )
5452, 53eqtr4d 2225 . . 3  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( (
z  e.  S  |->  ( C T z ) ) `  ( G `
 x ) )  =  ( F `  x ) )
5553, 49eqeltrd 2266 . . 3  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
561, 2, 3, 43, 54, 55, 1seq3homo 10540 . 2  |-  ( ph  ->  ( ( z  e.  S  |->  ( C T z ) ) `  (  seq M (  .+  ,  G ) `  N
) )  =  (  seq M (  .+  ,  F ) `  N
) )
57 eqid 2189 . . . . 5  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
58 eluzel2 9562 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
593, 58syl 14 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
6057, 59, 2, 1seqf 10491 . . . 4  |-  ( ph  ->  seq M (  .+  ,  G ) : (
ZZ>= `  M ) --> S )
6160, 3ffvelcdmd 5672 . . 3  |-  ( ph  ->  (  seq M ( 
.+  ,  G ) `
 N )  e.  S )
627, 5, 61caovcld 6049 . . 3  |-  ( ph  ->  ( C T (  seq M (  .+  ,  G ) `  N
) )  e.  S
)
63 oveq2 5903 . . . 4  |-  ( z  =  (  seq M
(  .+  ,  G
) `  N )  ->  ( C T z )  =  ( C T (  seq M
(  .+  ,  G
) `  N )
) )
6463, 23fvmptg 5612 . . 3  |-  ( ( (  seq M ( 
.+  ,  G ) `
 N )  e.  S  /\  ( C T (  seq M
(  .+  ,  G
) `  N )
)  e.  S )  ->  ( ( z  e.  S  |->  ( C T z ) ) `
 (  seq M
(  .+  ,  G
) `  N )
)  =  ( C T (  seq M
(  .+  ,  G
) `  N )
) )
6561, 62, 64syl2anc 411 . 2  |-  ( ph  ->  ( ( z  e.  S  |->  ( C T z ) ) `  (  seq M (  .+  ,  G ) `  N
) )  =  ( C T (  seq M (  .+  ,  G ) `  N
) ) )
6656, 65eqtr3d 2224 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  =  ( C T (  seq M (  .+  ,  G ) `  N
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160   A.wral 2468    |-> cmpt 4079   ` cfv 5235  (class class class)co 5895   ZZcz 9282   ZZ>=cuz 9557    seqcseq 10475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7931  ax-resscn 7932  ax-1cn 7933  ax-1re 7934  ax-icn 7935  ax-addcl 7936  ax-addrcl 7937  ax-mulcl 7938  ax-addcom 7940  ax-addass 7942  ax-distr 7944  ax-i2m1 7945  ax-0lt1 7946  ax-0id 7948  ax-rnegex 7949  ax-cnre 7951  ax-pre-ltirr 7952  ax-pre-ltwlin 7953  ax-pre-lttrn 7954  ax-pre-ltadd 7956
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5851  df-ov 5898  df-oprab 5899  df-mpo 5900  df-1st 6164  df-2nd 6165  df-recs 6329  df-frec 6415  df-pnf 8023  df-mnf 8024  df-xr 8025  df-ltxr 8026  df-le 8027  df-sub 8159  df-neg 8160  df-inn 8949  df-n0 9206  df-z 9283  df-uz 9558  df-seqfrec 10476
This theorem is referenced by:  isermulc2  11379  fsummulc2  11487
  Copyright terms: Public domain W3C validator