ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3distr Unicode version

Theorem seq3distr 10286
Description: The distributive property for series. (Contributed by Jim Kingdon, 10-Oct-2022.)
Hypotheses
Ref Expression
seq3distr.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
seq3distr.2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( C T ( x  .+  y ) )  =  ( ( C T x ) 
.+  ( C T y ) ) )
seq3distr.3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
seq3distr.4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
seq3distr.5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  =  ( C T ( G `
 x ) ) )
seq3distr.t  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x T y )  e.  S )
seq3distr.c  |-  ( ph  ->  C  e.  S )
Assertion
Ref Expression
seq3distr  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  =  ( C T (  seq M (  .+  ,  G ) `  N
) ) )
Distinct variable groups:    x,  .+ , y    x, C, y    x, F, y    x, G, y   
x, M, y    x, N, y    x, S, y   
x, T, y    ph, x, y

Proof of Theorem seq3distr
Dummy variables  b  z  a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seq3distr.1 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
2 seq3distr.4 . . 3  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
3 seq3distr.3 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
4 seq3distr.2 . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( C T ( x  .+  y ) )  =  ( ( C T x ) 
.+  ( C T y ) ) )
5 seq3distr.c . . . . . . 7  |-  ( ph  ->  C  e.  S )
65adantr 274 . . . . . 6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  C  e.  S )
7 seq3distr.t . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x T y )  e.  S )
87ralrimivva 2514 . . . . . . . 8  |-  ( ph  ->  A. x  e.  S  A. y  e.  S  ( x T y )  e.  S )
9 oveq1 5781 . . . . . . . . . 10  |-  ( x  =  a  ->  (
x T y )  =  ( a T y ) )
109eleq1d 2208 . . . . . . . . 9  |-  ( x  =  a  ->  (
( x T y )  e.  S  <->  ( a T y )  e.  S ) )
11 oveq2 5782 . . . . . . . . . 10  |-  ( y  =  b  ->  (
a T y )  =  ( a T b ) )
1211eleq1d 2208 . . . . . . . . 9  |-  ( y  =  b  ->  (
( a T y )  e.  S  <->  ( a T b )  e.  S ) )
1310, 12cbvral2v 2665 . . . . . . . 8  |-  ( A. x  e.  S  A. y  e.  S  (
x T y )  e.  S  <->  A. a  e.  S  A. b  e.  S  ( a T b )  e.  S )
148, 13sylib 121 . . . . . . 7  |-  ( ph  ->  A. a  e.  S  A. b  e.  S  ( a T b )  e.  S )
1514adantr 274 . . . . . 6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  A. a  e.  S  A. b  e.  S  ( a T b )  e.  S )
16 oveq1 5781 . . . . . . . 8  |-  ( a  =  C  ->  (
a T b )  =  ( C T b ) )
1716eleq1d 2208 . . . . . . 7  |-  ( a  =  C  ->  (
( a T b )  e.  S  <->  ( C T b )  e.  S ) )
18 oveq2 5782 . . . . . . . 8  |-  ( b  =  ( x  .+  y )  ->  ( C T b )  =  ( C T ( x  .+  y ) ) )
1918eleq1d 2208 . . . . . . 7  |-  ( b  =  ( x  .+  y )  ->  (
( C T b )  e.  S  <->  ( C T ( x  .+  y ) )  e.  S ) )
2017, 19rspc2va 2803 . . . . . 6  |-  ( ( ( C  e.  S  /\  ( x  .+  y
)  e.  S )  /\  A. a  e.  S  A. b  e.  S  ( a T b )  e.  S
)  ->  ( C T ( x  .+  y ) )  e.  S )
216, 1, 15, 20syl21anc 1215 . . . . 5  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( C T ( x  .+  y ) )  e.  S )
22 oveq2 5782 . . . . . 6  |-  ( z  =  ( x  .+  y )  ->  ( C T z )  =  ( C T ( x  .+  y ) ) )
23 eqid 2139 . . . . . 6  |-  ( z  e.  S  |->  ( C T z ) )  =  ( z  e.  S  |->  ( C T z ) )
2422, 23fvmptg 5497 . . . . 5  |-  ( ( ( x  .+  y
)  e.  S  /\  ( C T ( x 
.+  y ) )  e.  S )  -> 
( ( z  e.  S  |->  ( C T z ) ) `  ( x  .+  y ) )  =  ( C T ( x  .+  y ) ) )
251, 21, 24syl2anc 408 . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( ( z  e.  S  |->  ( C T z ) ) `  ( x  .+  y ) )  =  ( C T ( x  .+  y ) ) )
26 simprl 520 . . . . . 6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  x  e.  S )
27 oveq2 5782 . . . . . . . . 9  |-  ( b  =  x  ->  ( C T b )  =  ( C T x ) )
2827eleq1d 2208 . . . . . . . 8  |-  ( b  =  x  ->  (
( C T b )  e.  S  <->  ( C T x )  e.  S ) )
2917, 28rspc2va 2803 . . . . . . 7  |-  ( ( ( C  e.  S  /\  x  e.  S
)  /\  A. a  e.  S  A. b  e.  S  ( a T b )  e.  S )  ->  ( C T x )  e.  S )
306, 26, 15, 29syl21anc 1215 . . . . . 6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( C T x )  e.  S )
31 oveq2 5782 . . . . . . 7  |-  ( z  =  x  ->  ( C T z )  =  ( C T x ) )
3231, 23fvmptg 5497 . . . . . 6  |-  ( ( x  e.  S  /\  ( C T x )  e.  S )  -> 
( ( z  e.  S  |->  ( C T z ) ) `  x )  =  ( C T x ) )
3326, 30, 32syl2anc 408 . . . . 5  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( ( z  e.  S  |->  ( C T z ) ) `  x )  =  ( C T x ) )
34 simprr 521 . . . . . 6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
y  e.  S )
35 oveq2 5782 . . . . . . . . 9  |-  ( b  =  y  ->  ( C T b )  =  ( C T y ) )
3635eleq1d 2208 . . . . . . . 8  |-  ( b  =  y  ->  (
( C T b )  e.  S  <->  ( C T y )  e.  S ) )
3717, 36rspc2va 2803 . . . . . . 7  |-  ( ( ( C  e.  S  /\  y  e.  S
)  /\  A. a  e.  S  A. b  e.  S  ( a T b )  e.  S )  ->  ( C T y )  e.  S )
386, 34, 15, 37syl21anc 1215 . . . . . 6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( C T y )  e.  S )
39 oveq2 5782 . . . . . . 7  |-  ( z  =  y  ->  ( C T z )  =  ( C T y ) )
4039, 23fvmptg 5497 . . . . . 6  |-  ( ( y  e.  S  /\  ( C T y )  e.  S )  -> 
( ( z  e.  S  |->  ( C T z ) ) `  y )  =  ( C T y ) )
4134, 38, 40syl2anc 408 . . . . 5  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( ( z  e.  S  |->  ( C T z ) ) `  y )  =  ( C T y ) )
4233, 41oveq12d 5792 . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( ( ( z  e.  S  |->  ( C T z ) ) `
 x )  .+  ( ( z  e.  S  |->  ( C T z ) ) `  y ) )  =  ( ( C T x )  .+  ( C T y ) ) )
434, 25, 423eqtr4d 2182 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( ( z  e.  S  |->  ( C T z ) ) `  ( x  .+  y ) )  =  ( ( ( z  e.  S  |->  ( C T z ) ) `  x
)  .+  ( (
z  e.  S  |->  ( C T z ) ) `  y ) ) )
445adantr 274 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  C  e.  S )
4514adantr 274 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  A. a  e.  S  A. b  e.  S  ( a T b )  e.  S )
46 oveq2 5782 . . . . . . . 8  |-  ( b  =  ( G `  x )  ->  ( C T b )  =  ( C T ( G `  x ) ) )
4746eleq1d 2208 . . . . . . 7  |-  ( b  =  ( G `  x )  ->  (
( C T b )  e.  S  <->  ( C T ( G `  x ) )  e.  S ) )
4817, 47rspc2va 2803 . . . . . 6  |-  ( ( ( C  e.  S  /\  ( G `  x
)  e.  S )  /\  A. a  e.  S  A. b  e.  S  ( a T b )  e.  S
)  ->  ( C T ( G `  x ) )  e.  S )
4944, 2, 45, 48syl21anc 1215 . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( C T ( G `  x ) )  e.  S )
50 oveq2 5782 . . . . . 6  |-  ( z  =  ( G `  x )  ->  ( C T z )  =  ( C T ( G `  x ) ) )
5150, 23fvmptg 5497 . . . . 5  |-  ( ( ( G `  x
)  e.  S  /\  ( C T ( G `
 x ) )  e.  S )  -> 
( ( z  e.  S  |->  ( C T z ) ) `  ( G `  x ) )  =  ( C T ( G `  x ) ) )
522, 49, 51syl2anc 408 . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( (
z  e.  S  |->  ( C T z ) ) `  ( G `
 x ) )  =  ( C T ( G `  x
) ) )
53 seq3distr.5 . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  =  ( C T ( G `
 x ) ) )
5452, 53eqtr4d 2175 . . 3  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( (
z  e.  S  |->  ( C T z ) ) `  ( G `
 x ) )  =  ( F `  x ) )
5553, 49eqeltrd 2216 . . 3  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
561, 2, 3, 43, 54, 55, 1seq3homo 10283 . 2  |-  ( ph  ->  ( ( z  e.  S  |->  ( C T z ) ) `  (  seq M (  .+  ,  G ) `  N
) )  =  (  seq M (  .+  ,  F ) `  N
) )
57 eqid 2139 . . . . 5  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
58 eluzel2 9331 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
593, 58syl 14 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
6057, 59, 2, 1seqf 10234 . . . 4  |-  ( ph  ->  seq M (  .+  ,  G ) : (
ZZ>= `  M ) --> S )
6160, 3ffvelrnd 5556 . . 3  |-  ( ph  ->  (  seq M ( 
.+  ,  G ) `
 N )  e.  S )
627, 5, 61caovcld 5924 . . 3  |-  ( ph  ->  ( C T (  seq M (  .+  ,  G ) `  N
) )  e.  S
)
63 oveq2 5782 . . . 4  |-  ( z  =  (  seq M
(  .+  ,  G
) `  N )  ->  ( C T z )  =  ( C T (  seq M
(  .+  ,  G
) `  N )
) )
6463, 23fvmptg 5497 . . 3  |-  ( ( (  seq M ( 
.+  ,  G ) `
 N )  e.  S  /\  ( C T (  seq M
(  .+  ,  G
) `  N )
)  e.  S )  ->  ( ( z  e.  S  |->  ( C T z ) ) `
 (  seq M
(  .+  ,  G
) `  N )
)  =  ( C T (  seq M
(  .+  ,  G
) `  N )
) )
6561, 62, 64syl2anc 408 . 2  |-  ( ph  ->  ( ( z  e.  S  |->  ( C T z ) ) `  (  seq M (  .+  ,  G ) `  N
) )  =  ( C T (  seq M (  .+  ,  G ) `  N
) ) )
6656, 65eqtr3d 2174 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  =  ( C T (  seq M (  .+  ,  G ) `  N
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   A.wral 2416    |-> cmpt 3989   ` cfv 5123  (class class class)co 5774   ZZcz 9054   ZZ>=cuz 9326    seqcseq 10218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327  df-seqfrec 10219
This theorem is referenced by:  isermulc2  11109  fsummulc2  11217
  Copyright terms: Public domain W3C validator