| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seq3distr | Unicode version | ||
| Description: The distributive property for series. (Contributed by Jim Kingdon, 10-Oct-2022.) |
| Ref | Expression |
|---|---|
| seq3distr.1 |
|
| seq3distr.2 |
|
| seq3distr.3 |
|
| seq3distr.4 |
|
| seq3distr.5 |
|
| seq3distr.t |
|
| seq3distr.c |
|
| Ref | Expression |
|---|---|
| seq3distr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seq3distr.1 |
. . 3
| |
| 2 | seq3distr.4 |
. . 3
| |
| 3 | seq3distr.3 |
. . 3
| |
| 4 | seq3distr.2 |
. . . 4
| |
| 5 | seq3distr.c |
. . . . . . 7
| |
| 6 | 5 | adantr 276 |
. . . . . 6
|
| 7 | seq3distr.t |
. . . . . . . . 9
| |
| 8 | 7 | ralrimivva 2590 |
. . . . . . . 8
|
| 9 | oveq1 5974 |
. . . . . . . . . 10
| |
| 10 | 9 | eleq1d 2276 |
. . . . . . . . 9
|
| 11 | oveq2 5975 |
. . . . . . . . . 10
| |
| 12 | 11 | eleq1d 2276 |
. . . . . . . . 9
|
| 13 | 10, 12 | cbvral2v 2755 |
. . . . . . . 8
|
| 14 | 8, 13 | sylib 122 |
. . . . . . 7
|
| 15 | 14 | adantr 276 |
. . . . . 6
|
| 16 | oveq1 5974 |
. . . . . . . 8
| |
| 17 | 16 | eleq1d 2276 |
. . . . . . 7
|
| 18 | oveq2 5975 |
. . . . . . . 8
| |
| 19 | 18 | eleq1d 2276 |
. . . . . . 7
|
| 20 | 17, 19 | rspc2va 2898 |
. . . . . 6
|
| 21 | 6, 1, 15, 20 | syl21anc 1249 |
. . . . 5
|
| 22 | oveq2 5975 |
. . . . . 6
| |
| 23 | eqid 2207 |
. . . . . 6
| |
| 24 | 22, 23 | fvmptg 5678 |
. . . . 5
|
| 25 | 1, 21, 24 | syl2anc 411 |
. . . 4
|
| 26 | simprl 529 |
. . . . . 6
| |
| 27 | oveq2 5975 |
. . . . . . . . 9
| |
| 28 | 27 | eleq1d 2276 |
. . . . . . . 8
|
| 29 | 17, 28 | rspc2va 2898 |
. . . . . . 7
|
| 30 | 6, 26, 15, 29 | syl21anc 1249 |
. . . . . 6
|
| 31 | oveq2 5975 |
. . . . . . 7
| |
| 32 | 31, 23 | fvmptg 5678 |
. . . . . 6
|
| 33 | 26, 30, 32 | syl2anc 411 |
. . . . 5
|
| 34 | simprr 531 |
. . . . . 6
| |
| 35 | oveq2 5975 |
. . . . . . . . 9
| |
| 36 | 35 | eleq1d 2276 |
. . . . . . . 8
|
| 37 | 17, 36 | rspc2va 2898 |
. . . . . . 7
|
| 38 | 6, 34, 15, 37 | syl21anc 1249 |
. . . . . 6
|
| 39 | oveq2 5975 |
. . . . . . 7
| |
| 40 | 39, 23 | fvmptg 5678 |
. . . . . 6
|
| 41 | 34, 38, 40 | syl2anc 411 |
. . . . 5
|
| 42 | 33, 41 | oveq12d 5985 |
. . . 4
|
| 43 | 4, 25, 42 | 3eqtr4d 2250 |
. . 3
|
| 44 | 5 | adantr 276 |
. . . . . 6
|
| 45 | 14 | adantr 276 |
. . . . . 6
|
| 46 | oveq2 5975 |
. . . . . . . 8
| |
| 47 | 46 | eleq1d 2276 |
. . . . . . 7
|
| 48 | 17, 47 | rspc2va 2898 |
. . . . . 6
|
| 49 | 44, 2, 45, 48 | syl21anc 1249 |
. . . . 5
|
| 50 | oveq2 5975 |
. . . . . 6
| |
| 51 | 50, 23 | fvmptg 5678 |
. . . . 5
|
| 52 | 2, 49, 51 | syl2anc 411 |
. . . 4
|
| 53 | seq3distr.5 |
. . . 4
| |
| 54 | 52, 53 | eqtr4d 2243 |
. . 3
|
| 55 | 53, 49 | eqeltrd 2284 |
. . 3
|
| 56 | 1, 2, 3, 43, 54, 55, 1 | seq3homo 10709 |
. 2
|
| 57 | eqid 2207 |
. . . . 5
| |
| 58 | eluzel2 9688 |
. . . . . 6
| |
| 59 | 3, 58 | syl 14 |
. . . . 5
|
| 60 | 57, 59, 2, 1 | seqf 10646 |
. . . 4
|
| 61 | 60, 3 | ffvelcdmd 5739 |
. . 3
|
| 62 | 7, 5, 61 | caovcld 6123 |
. . 3
|
| 63 | oveq2 5975 |
. . . 4
| |
| 64 | 63, 23 | fvmptg 5678 |
. . 3
|
| 65 | 61, 62, 64 | syl2anc 411 |
. 2
|
| 66 | 56, 65 | eqtr3d 2242 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 df-uz 9684 df-seqfrec 10630 |
| This theorem is referenced by: isermulc2 11766 fsummulc2 11874 |
| Copyright terms: Public domain | W3C validator |