| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seq3distr | Unicode version | ||
| Description: The distributive property for series. (Contributed by Jim Kingdon, 10-Oct-2022.) |
| Ref | Expression |
|---|---|
| seq3distr.1 |
|
| seq3distr.2 |
|
| seq3distr.3 |
|
| seq3distr.4 |
|
| seq3distr.5 |
|
| seq3distr.t |
|
| seq3distr.c |
|
| Ref | Expression |
|---|---|
| seq3distr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seq3distr.1 |
. . 3
| |
| 2 | seq3distr.4 |
. . 3
| |
| 3 | seq3distr.3 |
. . 3
| |
| 4 | seq3distr.2 |
. . . 4
| |
| 5 | seq3distr.c |
. . . . . . 7
| |
| 6 | 5 | adantr 276 |
. . . . . 6
|
| 7 | seq3distr.t |
. . . . . . . . 9
| |
| 8 | 7 | ralrimivva 2612 |
. . . . . . . 8
|
| 9 | oveq1 6007 |
. . . . . . . . . 10
| |
| 10 | 9 | eleq1d 2298 |
. . . . . . . . 9
|
| 11 | oveq2 6008 |
. . . . . . . . . 10
| |
| 12 | 11 | eleq1d 2298 |
. . . . . . . . 9
|
| 13 | 10, 12 | cbvral2v 2778 |
. . . . . . . 8
|
| 14 | 8, 13 | sylib 122 |
. . . . . . 7
|
| 15 | 14 | adantr 276 |
. . . . . 6
|
| 16 | oveq1 6007 |
. . . . . . . 8
| |
| 17 | 16 | eleq1d 2298 |
. . . . . . 7
|
| 18 | oveq2 6008 |
. . . . . . . 8
| |
| 19 | 18 | eleq1d 2298 |
. . . . . . 7
|
| 20 | 17, 19 | rspc2va 2921 |
. . . . . 6
|
| 21 | 6, 1, 15, 20 | syl21anc 1270 |
. . . . 5
|
| 22 | oveq2 6008 |
. . . . . 6
| |
| 23 | eqid 2229 |
. . . . . 6
| |
| 24 | 22, 23 | fvmptg 5709 |
. . . . 5
|
| 25 | 1, 21, 24 | syl2anc 411 |
. . . 4
|
| 26 | simprl 529 |
. . . . . 6
| |
| 27 | oveq2 6008 |
. . . . . . . . 9
| |
| 28 | 27 | eleq1d 2298 |
. . . . . . . 8
|
| 29 | 17, 28 | rspc2va 2921 |
. . . . . . 7
|
| 30 | 6, 26, 15, 29 | syl21anc 1270 |
. . . . . 6
|
| 31 | oveq2 6008 |
. . . . . . 7
| |
| 32 | 31, 23 | fvmptg 5709 |
. . . . . 6
|
| 33 | 26, 30, 32 | syl2anc 411 |
. . . . 5
|
| 34 | simprr 531 |
. . . . . 6
| |
| 35 | oveq2 6008 |
. . . . . . . . 9
| |
| 36 | 35 | eleq1d 2298 |
. . . . . . . 8
|
| 37 | 17, 36 | rspc2va 2921 |
. . . . . . 7
|
| 38 | 6, 34, 15, 37 | syl21anc 1270 |
. . . . . 6
|
| 39 | oveq2 6008 |
. . . . . . 7
| |
| 40 | 39, 23 | fvmptg 5709 |
. . . . . 6
|
| 41 | 34, 38, 40 | syl2anc 411 |
. . . . 5
|
| 42 | 33, 41 | oveq12d 6018 |
. . . 4
|
| 43 | 4, 25, 42 | 3eqtr4d 2272 |
. . 3
|
| 44 | 5 | adantr 276 |
. . . . . 6
|
| 45 | 14 | adantr 276 |
. . . . . 6
|
| 46 | oveq2 6008 |
. . . . . . . 8
| |
| 47 | 46 | eleq1d 2298 |
. . . . . . 7
|
| 48 | 17, 47 | rspc2va 2921 |
. . . . . 6
|
| 49 | 44, 2, 45, 48 | syl21anc 1270 |
. . . . 5
|
| 50 | oveq2 6008 |
. . . . . 6
| |
| 51 | 50, 23 | fvmptg 5709 |
. . . . 5
|
| 52 | 2, 49, 51 | syl2anc 411 |
. . . 4
|
| 53 | seq3distr.5 |
. . . 4
| |
| 54 | 52, 53 | eqtr4d 2265 |
. . 3
|
| 55 | 53, 49 | eqeltrd 2306 |
. . 3
|
| 56 | 1, 2, 3, 43, 54, 55, 1 | seq3homo 10744 |
. 2
|
| 57 | eqid 2229 |
. . . . 5
| |
| 58 | eluzel2 9723 |
. . . . . 6
| |
| 59 | 3, 58 | syl 14 |
. . . . 5
|
| 60 | 57, 59, 2, 1 | seqf 10681 |
. . . 4
|
| 61 | 60, 3 | ffvelcdmd 5770 |
. . 3
|
| 62 | 7, 5, 61 | caovcld 6158 |
. . 3
|
| 63 | oveq2 6008 |
. . . 4
| |
| 64 | 63, 23 | fvmptg 5709 |
. . 3
|
| 65 | 61, 62, 64 | syl2anc 411 |
. 2
|
| 66 | 56, 65 | eqtr3d 2264 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-frec 6535 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-n0 9366 df-z 9443 df-uz 9719 df-seqfrec 10665 |
| This theorem is referenced by: isermulc2 11846 fsummulc2 11954 |
| Copyright terms: Public domain | W3C validator |