ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlemlim Unicode version

Theorem cauappcvgprlemlim 7662
Description: Lemma for cauappcvgpr 7663. The putative limit is a limit. (Contributed by Jim Kingdon, 20-Jun-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f  |-  ( ph  ->  F : Q. --> Q. )
cauappcvgpr.app  |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  (
p  +Q  q ) ) ) )
cauappcvgpr.bnd  |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )
cauappcvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >.
Assertion
Ref Expression
cauappcvgprlemlim  |-  ( ph  ->  A. q  e.  Q.  A. r  e.  Q.  ( <. { l  |  l 
<Q  ( F `  q
) } ,  {
u  |  ( F `
 q )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  ( q  +Q  r ) } ,  { u  |  (
q  +Q  r ) 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  q
)  +Q  ( q  +Q  r ) ) } ,  { u  |  ( ( F `
 q )  +Q  ( q  +Q  r
) )  <Q  u } >. ) )
Distinct variable groups:    A, p    L, p, q    ph, p, q    F, l, p, q, r, u    L, r
Allowed substitution hints:    ph( u, r, l)    A( u, r, q, l)    L( u, l)

Proof of Theorem cauappcvgprlemlim
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cauappcvgpr.f . . . . . 6  |-  ( ph  ->  F : Q. --> Q. )
21adantr 276 . . . . 5  |-  ( (
ph  /\  ( x  e.  Q.  /\  y  e. 
Q. ) )  ->  F : Q. --> Q. )
3 cauappcvgpr.app . . . . . 6  |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  (
p  +Q  q ) ) ) )
43adantr 276 . . . . 5  |-  ( (
ph  /\  ( x  e.  Q.  /\  y  e. 
Q. ) )  ->  A. p  e.  Q.  A. q  e.  Q.  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  (
p  +Q  q ) ) ) )
5 cauappcvgpr.bnd . . . . . 6  |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )
65adantr 276 . . . . 5  |-  ( (
ph  /\  ( x  e.  Q.  /\  y  e. 
Q. ) )  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )
7 cauappcvgpr.lim . . . . 5  |-  L  = 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >.
8 simprl 529 . . . . 5  |-  ( (
ph  /\  ( x  e.  Q.  /\  y  e. 
Q. ) )  ->  x  e.  Q. )
9 simprr 531 . . . . 5  |-  ( (
ph  /\  ( x  e.  Q.  /\  y  e. 
Q. ) )  -> 
y  e.  Q. )
102, 4, 6, 7, 8, 9cauappcvgprlem1 7660 . . . 4  |-  ( (
ph  /\  ( x  e.  Q.  /\  y  e. 
Q. ) )  ->  <. { l  |  l 
<Q  ( F `  x
) } ,  {
u  |  ( F `
 x )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  ( x  +Q  y ) } ,  { u  |  (
x  +Q  y ) 
<Q  u } >. )
)
112, 4, 6, 7, 8, 9cauappcvgprlem2 7661 . . . 4  |-  ( (
ph  /\  ( x  e.  Q.  /\  y  e. 
Q. ) )  ->  L  <P  <. { l  |  l  <Q  ( ( F `  x )  +Q  ( x  +Q  y
) ) } ,  { u  |  (
( F `  x
)  +Q  ( x  +Q  y ) ) 
<Q  u } >. )
1210, 11jca 306 . . 3  |-  ( (
ph  /\  ( x  e.  Q.  /\  y  e. 
Q. ) )  -> 
( <. { l  |  l  <Q  ( F `  x ) } ,  { u  |  ( F `  x )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  ( x  +Q  y ) } ,  { u  |  (
x  +Q  y ) 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  x
)  +Q  ( x  +Q  y ) ) } ,  { u  |  ( ( F `
 x )  +Q  ( x  +Q  y
) )  <Q  u } >. ) )
1312ralrimivva 2559 . 2  |-  ( ph  ->  A. x  e.  Q.  A. y  e.  Q.  ( <. { l  |  l 
<Q  ( F `  x
) } ,  {
u  |  ( F `
 x )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  ( x  +Q  y ) } ,  { u  |  (
x  +Q  y ) 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  x
)  +Q  ( x  +Q  y ) ) } ,  { u  |  ( ( F `
 x )  +Q  ( x  +Q  y
) )  <Q  u } >. ) )
14 fveq2 5517 . . . . . . . 8  |-  ( x  =  q  ->  ( F `  x )  =  ( F `  q ) )
1514breq2d 4017 . . . . . . 7  |-  ( x  =  q  ->  (
l  <Q  ( F `  x )  <->  l  <Q  ( F `  q ) ) )
1615abbidv 2295 . . . . . 6  |-  ( x  =  q  ->  { l  |  l  <Q  ( F `  x ) }  =  { l  |  l  <Q  ( F `
 q ) } )
1714breq1d 4015 . . . . . . 7  |-  ( x  =  q  ->  (
( F `  x
)  <Q  u  <->  ( F `  q )  <Q  u
) )
1817abbidv 2295 . . . . . 6  |-  ( x  =  q  ->  { u  |  ( F `  x )  <Q  u }  =  { u  |  ( F `  q )  <Q  u } )
1916, 18opeq12d 3788 . . . . 5  |-  ( x  =  q  ->  <. { l  |  l  <Q  ( F `  x ) } ,  { u  |  ( F `  x )  <Q  u } >.  =  <. { l  |  l  <Q  ( F `  q ) } ,  { u  |  ( F `  q )  <Q  u } >. )
20 oveq1 5884 . . . . . . . . 9  |-  ( x  =  q  ->  (
x  +Q  y )  =  ( q  +Q  y ) )
2120breq2d 4017 . . . . . . . 8  |-  ( x  =  q  ->  (
l  <Q  ( x  +Q  y )  <->  l  <Q  ( q  +Q  y ) ) )
2221abbidv 2295 . . . . . . 7  |-  ( x  =  q  ->  { l  |  l  <Q  (
x  +Q  y ) }  =  { l  |  l  <Q  (
q  +Q  y ) } )
2320breq1d 4015 . . . . . . . 8  |-  ( x  =  q  ->  (
( x  +Q  y
)  <Q  u  <->  ( q  +Q  y )  <Q  u
) )
2423abbidv 2295 . . . . . . 7  |-  ( x  =  q  ->  { u  |  ( x  +Q  y )  <Q  u }  =  { u  |  ( q  +Q  y )  <Q  u } )
2522, 24opeq12d 3788 . . . . . 6  |-  ( x  =  q  ->  <. { l  |  l  <Q  (
x  +Q  y ) } ,  { u  |  ( x  +Q  y )  <Q  u } >.  =  <. { l  |  l  <Q  (
q  +Q  y ) } ,  { u  |  ( q  +Q  y )  <Q  u } >. )
2625oveq2d 5893 . . . . 5  |-  ( x  =  q  ->  ( L  +P.  <. { l  |  l  <Q  ( x  +Q  y ) } ,  { u  |  (
x  +Q  y ) 
<Q  u } >. )  =  ( L  +P.  <. { l  |  l 
<Q  ( q  +Q  y
) } ,  {
u  |  ( q  +Q  y )  <Q  u } >. ) )
2719, 26breq12d 4018 . . . 4  |-  ( x  =  q  ->  ( <. { l  |  l 
<Q  ( F `  x
) } ,  {
u  |  ( F `
 x )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  ( x  +Q  y ) } ,  { u  |  (
x  +Q  y ) 
<Q  u } >. )  <->  <. { l  |  l 
<Q  ( F `  q
) } ,  {
u  |  ( F `
 q )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  ( q  +Q  y ) } ,  { u  |  (
q  +Q  y ) 
<Q  u } >. )
) )
2814, 20oveq12d 5895 . . . . . . . 8  |-  ( x  =  q  ->  (
( F `  x
)  +Q  ( x  +Q  y ) )  =  ( ( F `
 q )  +Q  ( q  +Q  y
) ) )
2928breq2d 4017 . . . . . . 7  |-  ( x  =  q  ->  (
l  <Q  ( ( F `
 x )  +Q  ( x  +Q  y
) )  <->  l  <Q  ( ( F `  q
)  +Q  ( q  +Q  y ) ) ) )
3029abbidv 2295 . . . . . 6  |-  ( x  =  q  ->  { l  |  l  <Q  (
( F `  x
)  +Q  ( x  +Q  y ) ) }  =  { l  |  l  <Q  (
( F `  q
)  +Q  ( q  +Q  y ) ) } )
3128breq1d 4015 . . . . . . 7  |-  ( x  =  q  ->  (
( ( F `  x )  +Q  (
x  +Q  y ) )  <Q  u  <->  ( ( F `  q )  +Q  ( q  +Q  y
) )  <Q  u
) )
3231abbidv 2295 . . . . . 6  |-  ( x  =  q  ->  { u  |  ( ( F `
 x )  +Q  ( x  +Q  y
) )  <Q  u }  =  { u  |  ( ( F `
 q )  +Q  ( q  +Q  y
) )  <Q  u } )
3330, 32opeq12d 3788 . . . . 5  |-  ( x  =  q  ->  <. { l  |  l  <Q  (
( F `  x
)  +Q  ( x  +Q  y ) ) } ,  { u  |  ( ( F `
 x )  +Q  ( x  +Q  y
) )  <Q  u } >.  =  <. { l  |  l  <Q  (
( F `  q
)  +Q  ( q  +Q  y ) ) } ,  { u  |  ( ( F `
 q )  +Q  ( q  +Q  y
) )  <Q  u } >. )
3433breq2d 4017 . . . 4  |-  ( x  =  q  ->  ( L  <P  <. { l  |  l  <Q  ( ( F `  x )  +Q  ( x  +Q  y
) ) } ,  { u  |  (
( F `  x
)  +Q  ( x  +Q  y ) ) 
<Q  u } >.  <->  L  <P  <. { l  |  l 
<Q  ( ( F `  q )  +Q  (
q  +Q  y ) ) } ,  {
u  |  ( ( F `  q )  +Q  ( q  +Q  y ) )  <Q  u } >. ) )
3527, 34anbi12d 473 . . 3  |-  ( x  =  q  ->  (
( <. { l  |  l  <Q  ( F `  x ) } ,  { u  |  ( F `  x )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  ( x  +Q  y ) } ,  { u  |  (
x  +Q  y ) 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  x
)  +Q  ( x  +Q  y ) ) } ,  { u  |  ( ( F `
 x )  +Q  ( x  +Q  y
) )  <Q  u } >. )  <->  ( <. { l  |  l  <Q 
( F `  q
) } ,  {
u  |  ( F `
 q )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  ( q  +Q  y ) } ,  { u  |  (
q  +Q  y ) 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  q
)  +Q  ( q  +Q  y ) ) } ,  { u  |  ( ( F `
 q )  +Q  ( q  +Q  y
) )  <Q  u } >. ) ) )
36 oveq2 5885 . . . . . . . . 9  |-  ( y  =  r  ->  (
q  +Q  y )  =  ( q  +Q  r ) )
3736breq2d 4017 . . . . . . . 8  |-  ( y  =  r  ->  (
l  <Q  ( q  +Q  y )  <->  l  <Q  ( q  +Q  r ) ) )
3837abbidv 2295 . . . . . . 7  |-  ( y  =  r  ->  { l  |  l  <Q  (
q  +Q  y ) }  =  { l  |  l  <Q  (
q  +Q  r ) } )
3936breq1d 4015 . . . . . . . 8  |-  ( y  =  r  ->  (
( q  +Q  y
)  <Q  u  <->  ( q  +Q  r )  <Q  u
) )
4039abbidv 2295 . . . . . . 7  |-  ( y  =  r  ->  { u  |  ( q  +Q  y )  <Q  u }  =  { u  |  ( q  +Q  r )  <Q  u } )
4138, 40opeq12d 3788 . . . . . 6  |-  ( y  =  r  ->  <. { l  |  l  <Q  (
q  +Q  y ) } ,  { u  |  ( q  +Q  y )  <Q  u } >.  =  <. { l  |  l  <Q  (
q  +Q  r ) } ,  { u  |  ( q  +Q  r )  <Q  u } >. )
4241oveq2d 5893 . . . . 5  |-  ( y  =  r  ->  ( L  +P.  <. { l  |  l  <Q  ( q  +Q  y ) } ,  { u  |  (
q  +Q  y ) 
<Q  u } >. )  =  ( L  +P.  <. { l  |  l 
<Q  ( q  +Q  r
) } ,  {
u  |  ( q  +Q  r )  <Q  u } >. ) )
4342breq2d 4017 . . . 4  |-  ( y  =  r  ->  ( <. { l  |  l 
<Q  ( F `  q
) } ,  {
u  |  ( F `
 q )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  ( q  +Q  y ) } ,  { u  |  (
q  +Q  y ) 
<Q  u } >. )  <->  <. { l  |  l 
<Q  ( F `  q
) } ,  {
u  |  ( F `
 q )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  ( q  +Q  r ) } ,  { u  |  (
q  +Q  r ) 
<Q  u } >. )
) )
4436oveq2d 5893 . . . . . . . 8  |-  ( y  =  r  ->  (
( F `  q
)  +Q  ( q  +Q  y ) )  =  ( ( F `
 q )  +Q  ( q  +Q  r
) ) )
4544breq2d 4017 . . . . . . 7  |-  ( y  =  r  ->  (
l  <Q  ( ( F `
 q )  +Q  ( q  +Q  y
) )  <->  l  <Q  ( ( F `  q
)  +Q  ( q  +Q  r ) ) ) )
4645abbidv 2295 . . . . . 6  |-  ( y  =  r  ->  { l  |  l  <Q  (
( F `  q
)  +Q  ( q  +Q  y ) ) }  =  { l  |  l  <Q  (
( F `  q
)  +Q  ( q  +Q  r ) ) } )
4744breq1d 4015 . . . . . . 7  |-  ( y  =  r  ->  (
( ( F `  q )  +Q  (
q  +Q  y ) )  <Q  u  <->  ( ( F `  q )  +Q  ( q  +Q  r
) )  <Q  u
) )
4847abbidv 2295 . . . . . 6  |-  ( y  =  r  ->  { u  |  ( ( F `
 q )  +Q  ( q  +Q  y
) )  <Q  u }  =  { u  |  ( ( F `
 q )  +Q  ( q  +Q  r
) )  <Q  u } )
4946, 48opeq12d 3788 . . . . 5  |-  ( y  =  r  ->  <. { l  |  l  <Q  (
( F `  q
)  +Q  ( q  +Q  y ) ) } ,  { u  |  ( ( F `
 q )  +Q  ( q  +Q  y
) )  <Q  u } >.  =  <. { l  |  l  <Q  (
( F `  q
)  +Q  ( q  +Q  r ) ) } ,  { u  |  ( ( F `
 q )  +Q  ( q  +Q  r
) )  <Q  u } >. )
5049breq2d 4017 . . . 4  |-  ( y  =  r  ->  ( L  <P  <. { l  |  l  <Q  ( ( F `  q )  +Q  ( q  +Q  y
) ) } ,  { u  |  (
( F `  q
)  +Q  ( q  +Q  y ) ) 
<Q  u } >.  <->  L  <P  <. { l  |  l 
<Q  ( ( F `  q )  +Q  (
q  +Q  r ) ) } ,  {
u  |  ( ( F `  q )  +Q  ( q  +Q  r ) )  <Q  u } >. ) )
5143, 50anbi12d 473 . . 3  |-  ( y  =  r  ->  (
( <. { l  |  l  <Q  ( F `  q ) } ,  { u  |  ( F `  q )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  ( q  +Q  y ) } ,  { u  |  (
q  +Q  y ) 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  q
)  +Q  ( q  +Q  y ) ) } ,  { u  |  ( ( F `
 q )  +Q  ( q  +Q  y
) )  <Q  u } >. )  <->  ( <. { l  |  l  <Q 
( F `  q
) } ,  {
u  |  ( F `
 q )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  ( q  +Q  r ) } ,  { u  |  (
q  +Q  r ) 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  q
)  +Q  ( q  +Q  r ) ) } ,  { u  |  ( ( F `
 q )  +Q  ( q  +Q  r
) )  <Q  u } >. ) ) )
5235, 51cbvral2v 2718 . 2  |-  ( A. x  e.  Q.  A. y  e.  Q.  ( <. { l  |  l  <Q  ( F `  x ) } ,  { u  |  ( F `  x )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l 
<Q  ( x  +Q  y
) } ,  {
u  |  ( x  +Q  y )  <Q  u } >. )  /\  L  <P 
<. { l  |  l 
<Q  ( ( F `  x )  +Q  (
x  +Q  y ) ) } ,  {
u  |  ( ( F `  x )  +Q  ( x  +Q  y ) )  <Q  u } >. )  <->  A. q  e.  Q.  A. r  e. 
Q.  ( <. { l  |  l  <Q  ( F `  q ) } ,  { u  |  ( F `  q )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l 
<Q  ( q  +Q  r
) } ,  {
u  |  ( q  +Q  r )  <Q  u } >. )  /\  L  <P 
<. { l  |  l 
<Q  ( ( F `  q )  +Q  (
q  +Q  r ) ) } ,  {
u  |  ( ( F `  q )  +Q  ( q  +Q  r ) )  <Q  u } >. ) )
5313, 52sylib 122 1  |-  ( ph  ->  A. q  e.  Q.  A. r  e.  Q.  ( <. { l  |  l 
<Q  ( F `  q
) } ,  {
u  |  ( F `
 q )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  ( q  +Q  r ) } ,  { u  |  (
q  +Q  r ) 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  q
)  +Q  ( q  +Q  r ) ) } ,  { u  |  ( ( F `
 q )  +Q  ( q  +Q  r
) )  <Q  u } >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   {cab 2163   A.wral 2455   E.wrex 2456   {crab 2459   <.cop 3597   class class class wbr 4005   -->wf 5214   ` cfv 5218  (class class class)co 5877   Q.cnq 7281    +Q cplq 7283    <Q cltq 7286    +P. cpp 7294    <P cltp 7296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-eprel 4291  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-1o 6419  df-2o 6420  df-oadd 6423  df-omul 6424  df-er 6537  df-ec 6539  df-qs 6543  df-ni 7305  df-pli 7306  df-mi 7307  df-lti 7308  df-plpq 7345  df-mpq 7346  df-enq 7348  df-nqqs 7349  df-plqqs 7350  df-mqqs 7351  df-1nqqs 7352  df-rq 7353  df-ltnqqs 7354  df-enq0 7425  df-nq0 7426  df-0nq0 7427  df-plq0 7428  df-mq0 7429  df-inp 7467  df-iplp 7469  df-iltp 7471
This theorem is referenced by:  cauappcvgpr  7663
  Copyright terms: Public domain W3C validator