| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cauappcvgprlemlim | Unicode version | ||
| Description: Lemma for cauappcvgpr 7790. The putative limit is a limit. (Contributed by Jim Kingdon, 20-Jun-2020.) |
| Ref | Expression |
|---|---|
| cauappcvgpr.f |
|
| cauappcvgpr.app |
|
| cauappcvgpr.bnd |
|
| cauappcvgpr.lim |
|
| Ref | Expression |
|---|---|
| cauappcvgprlemlim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cauappcvgpr.f |
. . . . . 6
| |
| 2 | 1 | adantr 276 |
. . . . 5
|
| 3 | cauappcvgpr.app |
. . . . . 6
| |
| 4 | 3 | adantr 276 |
. . . . 5
|
| 5 | cauappcvgpr.bnd |
. . . . . 6
| |
| 6 | 5 | adantr 276 |
. . . . 5
|
| 7 | cauappcvgpr.lim |
. . . . 5
| |
| 8 | simprl 529 |
. . . . 5
| |
| 9 | simprr 531 |
. . . . 5
| |
| 10 | 2, 4, 6, 7, 8, 9 | cauappcvgprlem1 7787 |
. . . 4
|
| 11 | 2, 4, 6, 7, 8, 9 | cauappcvgprlem2 7788 |
. . . 4
|
| 12 | 10, 11 | jca 306 |
. . 3
|
| 13 | 12 | ralrimivva 2589 |
. 2
|
| 14 | fveq2 5588 |
. . . . . . . 8
| |
| 15 | 14 | breq2d 4062 |
. . . . . . 7
|
| 16 | 15 | abbidv 2324 |
. . . . . 6
|
| 17 | 14 | breq1d 4060 |
. . . . . . 7
|
| 18 | 17 | abbidv 2324 |
. . . . . 6
|
| 19 | 16, 18 | opeq12d 3832 |
. . . . 5
|
| 20 | oveq1 5963 |
. . . . . . . . 9
| |
| 21 | 20 | breq2d 4062 |
. . . . . . . 8
|
| 22 | 21 | abbidv 2324 |
. . . . . . 7
|
| 23 | 20 | breq1d 4060 |
. . . . . . . 8
|
| 24 | 23 | abbidv 2324 |
. . . . . . 7
|
| 25 | 22, 24 | opeq12d 3832 |
. . . . . 6
|
| 26 | 25 | oveq2d 5972 |
. . . . 5
|
| 27 | 19, 26 | breq12d 4063 |
. . . 4
|
| 28 | 14, 20 | oveq12d 5974 |
. . . . . . . 8
|
| 29 | 28 | breq2d 4062 |
. . . . . . 7
|
| 30 | 29 | abbidv 2324 |
. . . . . 6
|
| 31 | 28 | breq1d 4060 |
. . . . . . 7
|
| 32 | 31 | abbidv 2324 |
. . . . . 6
|
| 33 | 30, 32 | opeq12d 3832 |
. . . . 5
|
| 34 | 33 | breq2d 4062 |
. . . 4
|
| 35 | 27, 34 | anbi12d 473 |
. . 3
|
| 36 | oveq2 5964 |
. . . . . . . . 9
| |
| 37 | 36 | breq2d 4062 |
. . . . . . . 8
|
| 38 | 37 | abbidv 2324 |
. . . . . . 7
|
| 39 | 36 | breq1d 4060 |
. . . . . . . 8
|
| 40 | 39 | abbidv 2324 |
. . . . . . 7
|
| 41 | 38, 40 | opeq12d 3832 |
. . . . . 6
|
| 42 | 41 | oveq2d 5972 |
. . . . 5
|
| 43 | 42 | breq2d 4062 |
. . . 4
|
| 44 | 36 | oveq2d 5972 |
. . . . . . . 8
|
| 45 | 44 | breq2d 4062 |
. . . . . . 7
|
| 46 | 45 | abbidv 2324 |
. . . . . 6
|
| 47 | 44 | breq1d 4060 |
. . . . . . 7
|
| 48 | 47 | abbidv 2324 |
. . . . . 6
|
| 49 | 46, 48 | opeq12d 3832 |
. . . . 5
|
| 50 | 49 | breq2d 4062 |
. . . 4
|
| 51 | 43, 50 | anbi12d 473 |
. . 3
|
| 52 | 35, 51 | cbvral2v 2752 |
. 2
|
| 53 | 13, 52 | sylib 122 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4166 ax-sep 4169 ax-nul 4177 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-iinf 4643 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-tr 4150 df-eprel 4343 df-id 4347 df-po 4350 df-iso 4351 df-iord 4420 df-on 4422 df-suc 4425 df-iom 4646 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-ov 5959 df-oprab 5960 df-mpo 5961 df-1st 6238 df-2nd 6239 df-recs 6403 df-irdg 6468 df-1o 6514 df-2o 6515 df-oadd 6518 df-omul 6519 df-er 6632 df-ec 6634 df-qs 6638 df-ni 7432 df-pli 7433 df-mi 7434 df-lti 7435 df-plpq 7472 df-mpq 7473 df-enq 7475 df-nqqs 7476 df-plqqs 7477 df-mqqs 7478 df-1nqqs 7479 df-rq 7480 df-ltnqqs 7481 df-enq0 7552 df-nq0 7553 df-0nq0 7554 df-plq0 7555 df-mq0 7556 df-inp 7594 df-iplp 7596 df-iltp 7598 |
| This theorem is referenced by: cauappcvgpr 7790 |
| Copyright terms: Public domain | W3C validator |