ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlemlim Unicode version

Theorem cauappcvgprlemlim 7462
Description: Lemma for cauappcvgpr 7463. The putative limit is a limit. (Contributed by Jim Kingdon, 20-Jun-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f  |-  ( ph  ->  F : Q. --> Q. )
cauappcvgpr.app  |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  (
p  +Q  q ) ) ) )
cauappcvgpr.bnd  |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )
cauappcvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >.
Assertion
Ref Expression
cauappcvgprlemlim  |-  ( ph  ->  A. q  e.  Q.  A. r  e.  Q.  ( <. { l  |  l 
<Q  ( F `  q
) } ,  {
u  |  ( F `
 q )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  ( q  +Q  r ) } ,  { u  |  (
q  +Q  r ) 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  q
)  +Q  ( q  +Q  r ) ) } ,  { u  |  ( ( F `
 q )  +Q  ( q  +Q  r
) )  <Q  u } >. ) )
Distinct variable groups:    A, p    L, p, q    ph, p, q    F, l, p, q, r, u    L, r
Allowed substitution hints:    ph( u, r, l)    A( u, r, q, l)    L( u, l)

Proof of Theorem cauappcvgprlemlim
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cauappcvgpr.f . . . . . 6  |-  ( ph  ->  F : Q. --> Q. )
21adantr 274 . . . . 5  |-  ( (
ph  /\  ( x  e.  Q.  /\  y  e. 
Q. ) )  ->  F : Q. --> Q. )
3 cauappcvgpr.app . . . . . 6  |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  (
p  +Q  q ) ) ) )
43adantr 274 . . . . 5  |-  ( (
ph  /\  ( x  e.  Q.  /\  y  e. 
Q. ) )  ->  A. p  e.  Q.  A. q  e.  Q.  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  (
p  +Q  q ) ) ) )
5 cauappcvgpr.bnd . . . . . 6  |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )
65adantr 274 . . . . 5  |-  ( (
ph  /\  ( x  e.  Q.  /\  y  e. 
Q. ) )  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )
7 cauappcvgpr.lim . . . . 5  |-  L  = 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >.
8 simprl 520 . . . . 5  |-  ( (
ph  /\  ( x  e.  Q.  /\  y  e. 
Q. ) )  ->  x  e.  Q. )
9 simprr 521 . . . . 5  |-  ( (
ph  /\  ( x  e.  Q.  /\  y  e. 
Q. ) )  -> 
y  e.  Q. )
102, 4, 6, 7, 8, 9cauappcvgprlem1 7460 . . . 4  |-  ( (
ph  /\  ( x  e.  Q.  /\  y  e. 
Q. ) )  ->  <. { l  |  l 
<Q  ( F `  x
) } ,  {
u  |  ( F `
 x )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  ( x  +Q  y ) } ,  { u  |  (
x  +Q  y ) 
<Q  u } >. )
)
112, 4, 6, 7, 8, 9cauappcvgprlem2 7461 . . . 4  |-  ( (
ph  /\  ( x  e.  Q.  /\  y  e. 
Q. ) )  ->  L  <P  <. { l  |  l  <Q  ( ( F `  x )  +Q  ( x  +Q  y
) ) } ,  { u  |  (
( F `  x
)  +Q  ( x  +Q  y ) ) 
<Q  u } >. )
1210, 11jca 304 . . 3  |-  ( (
ph  /\  ( x  e.  Q.  /\  y  e. 
Q. ) )  -> 
( <. { l  |  l  <Q  ( F `  x ) } ,  { u  |  ( F `  x )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  ( x  +Q  y ) } ,  { u  |  (
x  +Q  y ) 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  x
)  +Q  ( x  +Q  y ) ) } ,  { u  |  ( ( F `
 x )  +Q  ( x  +Q  y
) )  <Q  u } >. ) )
1312ralrimivva 2512 . 2  |-  ( ph  ->  A. x  e.  Q.  A. y  e.  Q.  ( <. { l  |  l 
<Q  ( F `  x
) } ,  {
u  |  ( F `
 x )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  ( x  +Q  y ) } ,  { u  |  (
x  +Q  y ) 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  x
)  +Q  ( x  +Q  y ) ) } ,  { u  |  ( ( F `
 x )  +Q  ( x  +Q  y
) )  <Q  u } >. ) )
14 fveq2 5414 . . . . . . . 8  |-  ( x  =  q  ->  ( F `  x )  =  ( F `  q ) )
1514breq2d 3936 . . . . . . 7  |-  ( x  =  q  ->  (
l  <Q  ( F `  x )  <->  l  <Q  ( F `  q ) ) )
1615abbidv 2255 . . . . . 6  |-  ( x  =  q  ->  { l  |  l  <Q  ( F `  x ) }  =  { l  |  l  <Q  ( F `
 q ) } )
1714breq1d 3934 . . . . . . 7  |-  ( x  =  q  ->  (
( F `  x
)  <Q  u  <->  ( F `  q )  <Q  u
) )
1817abbidv 2255 . . . . . 6  |-  ( x  =  q  ->  { u  |  ( F `  x )  <Q  u }  =  { u  |  ( F `  q )  <Q  u } )
1916, 18opeq12d 3708 . . . . 5  |-  ( x  =  q  ->  <. { l  |  l  <Q  ( F `  x ) } ,  { u  |  ( F `  x )  <Q  u } >.  =  <. { l  |  l  <Q  ( F `  q ) } ,  { u  |  ( F `  q )  <Q  u } >. )
20 oveq1 5774 . . . . . . . . 9  |-  ( x  =  q  ->  (
x  +Q  y )  =  ( q  +Q  y ) )
2120breq2d 3936 . . . . . . . 8  |-  ( x  =  q  ->  (
l  <Q  ( x  +Q  y )  <->  l  <Q  ( q  +Q  y ) ) )
2221abbidv 2255 . . . . . . 7  |-  ( x  =  q  ->  { l  |  l  <Q  (
x  +Q  y ) }  =  { l  |  l  <Q  (
q  +Q  y ) } )
2320breq1d 3934 . . . . . . . 8  |-  ( x  =  q  ->  (
( x  +Q  y
)  <Q  u  <->  ( q  +Q  y )  <Q  u
) )
2423abbidv 2255 . . . . . . 7  |-  ( x  =  q  ->  { u  |  ( x  +Q  y )  <Q  u }  =  { u  |  ( q  +Q  y )  <Q  u } )
2522, 24opeq12d 3708 . . . . . 6  |-  ( x  =  q  ->  <. { l  |  l  <Q  (
x  +Q  y ) } ,  { u  |  ( x  +Q  y )  <Q  u } >.  =  <. { l  |  l  <Q  (
q  +Q  y ) } ,  { u  |  ( q  +Q  y )  <Q  u } >. )
2625oveq2d 5783 . . . . 5  |-  ( x  =  q  ->  ( L  +P.  <. { l  |  l  <Q  ( x  +Q  y ) } ,  { u  |  (
x  +Q  y ) 
<Q  u } >. )  =  ( L  +P.  <. { l  |  l 
<Q  ( q  +Q  y
) } ,  {
u  |  ( q  +Q  y )  <Q  u } >. ) )
2719, 26breq12d 3937 . . . 4  |-  ( x  =  q  ->  ( <. { l  |  l 
<Q  ( F `  x
) } ,  {
u  |  ( F `
 x )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  ( x  +Q  y ) } ,  { u  |  (
x  +Q  y ) 
<Q  u } >. )  <->  <. { l  |  l 
<Q  ( F `  q
) } ,  {
u  |  ( F `
 q )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  ( q  +Q  y ) } ,  { u  |  (
q  +Q  y ) 
<Q  u } >. )
) )
2814, 20oveq12d 5785 . . . . . . . 8  |-  ( x  =  q  ->  (
( F `  x
)  +Q  ( x  +Q  y ) )  =  ( ( F `
 q )  +Q  ( q  +Q  y
) ) )
2928breq2d 3936 . . . . . . 7  |-  ( x  =  q  ->  (
l  <Q  ( ( F `
 x )  +Q  ( x  +Q  y
) )  <->  l  <Q  ( ( F `  q
)  +Q  ( q  +Q  y ) ) ) )
3029abbidv 2255 . . . . . 6  |-  ( x  =  q  ->  { l  |  l  <Q  (
( F `  x
)  +Q  ( x  +Q  y ) ) }  =  { l  |  l  <Q  (
( F `  q
)  +Q  ( q  +Q  y ) ) } )
3128breq1d 3934 . . . . . . 7  |-  ( x  =  q  ->  (
( ( F `  x )  +Q  (
x  +Q  y ) )  <Q  u  <->  ( ( F `  q )  +Q  ( q  +Q  y
) )  <Q  u
) )
3231abbidv 2255 . . . . . 6  |-  ( x  =  q  ->  { u  |  ( ( F `
 x )  +Q  ( x  +Q  y
) )  <Q  u }  =  { u  |  ( ( F `
 q )  +Q  ( q  +Q  y
) )  <Q  u } )
3330, 32opeq12d 3708 . . . . 5  |-  ( x  =  q  ->  <. { l  |  l  <Q  (
( F `  x
)  +Q  ( x  +Q  y ) ) } ,  { u  |  ( ( F `
 x )  +Q  ( x  +Q  y
) )  <Q  u } >.  =  <. { l  |  l  <Q  (
( F `  q
)  +Q  ( q  +Q  y ) ) } ,  { u  |  ( ( F `
 q )  +Q  ( q  +Q  y
) )  <Q  u } >. )
3433breq2d 3936 . . . 4  |-  ( x  =  q  ->  ( L  <P  <. { l  |  l  <Q  ( ( F `  x )  +Q  ( x  +Q  y
) ) } ,  { u  |  (
( F `  x
)  +Q  ( x  +Q  y ) ) 
<Q  u } >.  <->  L  <P  <. { l  |  l 
<Q  ( ( F `  q )  +Q  (
q  +Q  y ) ) } ,  {
u  |  ( ( F `  q )  +Q  ( q  +Q  y ) )  <Q  u } >. ) )
3527, 34anbi12d 464 . . 3  |-  ( x  =  q  ->  (
( <. { l  |  l  <Q  ( F `  x ) } ,  { u  |  ( F `  x )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  ( x  +Q  y ) } ,  { u  |  (
x  +Q  y ) 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  x
)  +Q  ( x  +Q  y ) ) } ,  { u  |  ( ( F `
 x )  +Q  ( x  +Q  y
) )  <Q  u } >. )  <->  ( <. { l  |  l  <Q 
( F `  q
) } ,  {
u  |  ( F `
 q )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  ( q  +Q  y ) } ,  { u  |  (
q  +Q  y ) 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  q
)  +Q  ( q  +Q  y ) ) } ,  { u  |  ( ( F `
 q )  +Q  ( q  +Q  y
) )  <Q  u } >. ) ) )
36 oveq2 5775 . . . . . . . . 9  |-  ( y  =  r  ->  (
q  +Q  y )  =  ( q  +Q  r ) )
3736breq2d 3936 . . . . . . . 8  |-  ( y  =  r  ->  (
l  <Q  ( q  +Q  y )  <->  l  <Q  ( q  +Q  r ) ) )
3837abbidv 2255 . . . . . . 7  |-  ( y  =  r  ->  { l  |  l  <Q  (
q  +Q  y ) }  =  { l  |  l  <Q  (
q  +Q  r ) } )
3936breq1d 3934 . . . . . . . 8  |-  ( y  =  r  ->  (
( q  +Q  y
)  <Q  u  <->  ( q  +Q  r )  <Q  u
) )
4039abbidv 2255 . . . . . . 7  |-  ( y  =  r  ->  { u  |  ( q  +Q  y )  <Q  u }  =  { u  |  ( q  +Q  r )  <Q  u } )
4138, 40opeq12d 3708 . . . . . 6  |-  ( y  =  r  ->  <. { l  |  l  <Q  (
q  +Q  y ) } ,  { u  |  ( q  +Q  y )  <Q  u } >.  =  <. { l  |  l  <Q  (
q  +Q  r ) } ,  { u  |  ( q  +Q  r )  <Q  u } >. )
4241oveq2d 5783 . . . . 5  |-  ( y  =  r  ->  ( L  +P.  <. { l  |  l  <Q  ( q  +Q  y ) } ,  { u  |  (
q  +Q  y ) 
<Q  u } >. )  =  ( L  +P.  <. { l  |  l 
<Q  ( q  +Q  r
) } ,  {
u  |  ( q  +Q  r )  <Q  u } >. ) )
4342breq2d 3936 . . . 4  |-  ( y  =  r  ->  ( <. { l  |  l 
<Q  ( F `  q
) } ,  {
u  |  ( F `
 q )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  ( q  +Q  y ) } ,  { u  |  (
q  +Q  y ) 
<Q  u } >. )  <->  <. { l  |  l 
<Q  ( F `  q
) } ,  {
u  |  ( F `
 q )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  ( q  +Q  r ) } ,  { u  |  (
q  +Q  r ) 
<Q  u } >. )
) )
4436oveq2d 5783 . . . . . . . 8  |-  ( y  =  r  ->  (
( F `  q
)  +Q  ( q  +Q  y ) )  =  ( ( F `
 q )  +Q  ( q  +Q  r
) ) )
4544breq2d 3936 . . . . . . 7  |-  ( y  =  r  ->  (
l  <Q  ( ( F `
 q )  +Q  ( q  +Q  y
) )  <->  l  <Q  ( ( F `  q
)  +Q  ( q  +Q  r ) ) ) )
4645abbidv 2255 . . . . . 6  |-  ( y  =  r  ->  { l  |  l  <Q  (
( F `  q
)  +Q  ( q  +Q  y ) ) }  =  { l  |  l  <Q  (
( F `  q
)  +Q  ( q  +Q  r ) ) } )
4744breq1d 3934 . . . . . . 7  |-  ( y  =  r  ->  (
( ( F `  q )  +Q  (
q  +Q  y ) )  <Q  u  <->  ( ( F `  q )  +Q  ( q  +Q  r
) )  <Q  u
) )
4847abbidv 2255 . . . . . 6  |-  ( y  =  r  ->  { u  |  ( ( F `
 q )  +Q  ( q  +Q  y
) )  <Q  u }  =  { u  |  ( ( F `
 q )  +Q  ( q  +Q  r
) )  <Q  u } )
4946, 48opeq12d 3708 . . . . 5  |-  ( y  =  r  ->  <. { l  |  l  <Q  (
( F `  q
)  +Q  ( q  +Q  y ) ) } ,  { u  |  ( ( F `
 q )  +Q  ( q  +Q  y
) )  <Q  u } >.  =  <. { l  |  l  <Q  (
( F `  q
)  +Q  ( q  +Q  r ) ) } ,  { u  |  ( ( F `
 q )  +Q  ( q  +Q  r
) )  <Q  u } >. )
5049breq2d 3936 . . . 4  |-  ( y  =  r  ->  ( L  <P  <. { l  |  l  <Q  ( ( F `  q )  +Q  ( q  +Q  y
) ) } ,  { u  |  (
( F `  q
)  +Q  ( q  +Q  y ) ) 
<Q  u } >.  <->  L  <P  <. { l  |  l 
<Q  ( ( F `  q )  +Q  (
q  +Q  r ) ) } ,  {
u  |  ( ( F `  q )  +Q  ( q  +Q  r ) )  <Q  u } >. ) )
5143, 50anbi12d 464 . . 3  |-  ( y  =  r  ->  (
( <. { l  |  l  <Q  ( F `  q ) } ,  { u  |  ( F `  q )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  ( q  +Q  y ) } ,  { u  |  (
q  +Q  y ) 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  q
)  +Q  ( q  +Q  y ) ) } ,  { u  |  ( ( F `
 q )  +Q  ( q  +Q  y
) )  <Q  u } >. )  <->  ( <. { l  |  l  <Q 
( F `  q
) } ,  {
u  |  ( F `
 q )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  ( q  +Q  r ) } ,  { u  |  (
q  +Q  r ) 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  q
)  +Q  ( q  +Q  r ) ) } ,  { u  |  ( ( F `
 q )  +Q  ( q  +Q  r
) )  <Q  u } >. ) ) )
5235, 51cbvral2v 2660 . 2  |-  ( A. x  e.  Q.  A. y  e.  Q.  ( <. { l  |  l  <Q  ( F `  x ) } ,  { u  |  ( F `  x )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l 
<Q  ( x  +Q  y
) } ,  {
u  |  ( x  +Q  y )  <Q  u } >. )  /\  L  <P 
<. { l  |  l 
<Q  ( ( F `  x )  +Q  (
x  +Q  y ) ) } ,  {
u  |  ( ( F `  x )  +Q  ( x  +Q  y ) )  <Q  u } >. )  <->  A. q  e.  Q.  A. r  e. 
Q.  ( <. { l  |  l  <Q  ( F `  q ) } ,  { u  |  ( F `  q )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l 
<Q  ( q  +Q  r
) } ,  {
u  |  ( q  +Q  r )  <Q  u } >. )  /\  L  <P 
<. { l  |  l 
<Q  ( ( F `  q )  +Q  (
q  +Q  r ) ) } ,  {
u  |  ( ( F `  q )  +Q  ( q  +Q  r ) )  <Q  u } >. ) )
5313, 52sylib 121 1  |-  ( ph  ->  A. q  e.  Q.  A. r  e.  Q.  ( <. { l  |  l 
<Q  ( F `  q
) } ,  {
u  |  ( F `
 q )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  ( q  +Q  r ) } ,  { u  |  (
q  +Q  r ) 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  q
)  +Q  ( q  +Q  r ) ) } ,  { u  |  ( ( F `
 q )  +Q  ( q  +Q  r
) )  <Q  u } >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   {cab 2123   A.wral 2414   E.wrex 2415   {crab 2418   <.cop 3525   class class class wbr 3924   -->wf 5114   ` cfv 5118  (class class class)co 5767   Q.cnq 7081    +Q cplq 7083    <Q cltq 7086    +P. cpp 7094    <P cltp 7096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-eprel 4206  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-1o 6306  df-2o 6307  df-oadd 6310  df-omul 6311  df-er 6422  df-ec 6424  df-qs 6428  df-ni 7105  df-pli 7106  df-mi 7107  df-lti 7108  df-plpq 7145  df-mpq 7146  df-enq 7148  df-nqqs 7149  df-plqqs 7150  df-mqqs 7151  df-1nqqs 7152  df-rq 7153  df-ltnqqs 7154  df-enq0 7225  df-nq0 7226  df-0nq0 7227  df-plq0 7228  df-mq0 7229  df-inp 7267  df-iplp 7269  df-iltp 7271
This theorem is referenced by:  cauappcvgpr  7463
  Copyright terms: Public domain W3C validator