ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlemlim Unicode version

Theorem cauappcvgprlemlim 7602
Description: Lemma for cauappcvgpr 7603. The putative limit is a limit. (Contributed by Jim Kingdon, 20-Jun-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f  |-  ( ph  ->  F : Q. --> Q. )
cauappcvgpr.app  |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  (
p  +Q  q ) ) ) )
cauappcvgpr.bnd  |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )
cauappcvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >.
Assertion
Ref Expression
cauappcvgprlemlim  |-  ( ph  ->  A. q  e.  Q.  A. r  e.  Q.  ( <. { l  |  l 
<Q  ( F `  q
) } ,  {
u  |  ( F `
 q )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  ( q  +Q  r ) } ,  { u  |  (
q  +Q  r ) 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  q
)  +Q  ( q  +Q  r ) ) } ,  { u  |  ( ( F `
 q )  +Q  ( q  +Q  r
) )  <Q  u } >. ) )
Distinct variable groups:    A, p    L, p, q    ph, p, q    F, l, p, q, r, u    L, r
Allowed substitution hints:    ph( u, r, l)    A( u, r, q, l)    L( u, l)

Proof of Theorem cauappcvgprlemlim
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cauappcvgpr.f . . . . . 6  |-  ( ph  ->  F : Q. --> Q. )
21adantr 274 . . . . 5  |-  ( (
ph  /\  ( x  e.  Q.  /\  y  e. 
Q. ) )  ->  F : Q. --> Q. )
3 cauappcvgpr.app . . . . . 6  |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  (
p  +Q  q ) ) ) )
43adantr 274 . . . . 5  |-  ( (
ph  /\  ( x  e.  Q.  /\  y  e. 
Q. ) )  ->  A. p  e.  Q.  A. q  e.  Q.  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  (
p  +Q  q ) ) ) )
5 cauappcvgpr.bnd . . . . . 6  |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )
65adantr 274 . . . . 5  |-  ( (
ph  /\  ( x  e.  Q.  /\  y  e. 
Q. ) )  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )
7 cauappcvgpr.lim . . . . 5  |-  L  = 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >.
8 simprl 521 . . . . 5  |-  ( (
ph  /\  ( x  e.  Q.  /\  y  e. 
Q. ) )  ->  x  e.  Q. )
9 simprr 522 . . . . 5  |-  ( (
ph  /\  ( x  e.  Q.  /\  y  e. 
Q. ) )  -> 
y  e.  Q. )
102, 4, 6, 7, 8, 9cauappcvgprlem1 7600 . . . 4  |-  ( (
ph  /\  ( x  e.  Q.  /\  y  e. 
Q. ) )  ->  <. { l  |  l 
<Q  ( F `  x
) } ,  {
u  |  ( F `
 x )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  ( x  +Q  y ) } ,  { u  |  (
x  +Q  y ) 
<Q  u } >. )
)
112, 4, 6, 7, 8, 9cauappcvgprlem2 7601 . . . 4  |-  ( (
ph  /\  ( x  e.  Q.  /\  y  e. 
Q. ) )  ->  L  <P  <. { l  |  l  <Q  ( ( F `  x )  +Q  ( x  +Q  y
) ) } ,  { u  |  (
( F `  x
)  +Q  ( x  +Q  y ) ) 
<Q  u } >. )
1210, 11jca 304 . . 3  |-  ( (
ph  /\  ( x  e.  Q.  /\  y  e. 
Q. ) )  -> 
( <. { l  |  l  <Q  ( F `  x ) } ,  { u  |  ( F `  x )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  ( x  +Q  y ) } ,  { u  |  (
x  +Q  y ) 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  x
)  +Q  ( x  +Q  y ) ) } ,  { u  |  ( ( F `
 x )  +Q  ( x  +Q  y
) )  <Q  u } >. ) )
1312ralrimivva 2548 . 2  |-  ( ph  ->  A. x  e.  Q.  A. y  e.  Q.  ( <. { l  |  l 
<Q  ( F `  x
) } ,  {
u  |  ( F `
 x )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  ( x  +Q  y ) } ,  { u  |  (
x  +Q  y ) 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  x
)  +Q  ( x  +Q  y ) ) } ,  { u  |  ( ( F `
 x )  +Q  ( x  +Q  y
) )  <Q  u } >. ) )
14 fveq2 5486 . . . . . . . 8  |-  ( x  =  q  ->  ( F `  x )  =  ( F `  q ) )
1514breq2d 3994 . . . . . . 7  |-  ( x  =  q  ->  (
l  <Q  ( F `  x )  <->  l  <Q  ( F `  q ) ) )
1615abbidv 2284 . . . . . 6  |-  ( x  =  q  ->  { l  |  l  <Q  ( F `  x ) }  =  { l  |  l  <Q  ( F `
 q ) } )
1714breq1d 3992 . . . . . . 7  |-  ( x  =  q  ->  (
( F `  x
)  <Q  u  <->  ( F `  q )  <Q  u
) )
1817abbidv 2284 . . . . . 6  |-  ( x  =  q  ->  { u  |  ( F `  x )  <Q  u }  =  { u  |  ( F `  q )  <Q  u } )
1916, 18opeq12d 3766 . . . . 5  |-  ( x  =  q  ->  <. { l  |  l  <Q  ( F `  x ) } ,  { u  |  ( F `  x )  <Q  u } >.  =  <. { l  |  l  <Q  ( F `  q ) } ,  { u  |  ( F `  q )  <Q  u } >. )
20 oveq1 5849 . . . . . . . . 9  |-  ( x  =  q  ->  (
x  +Q  y )  =  ( q  +Q  y ) )
2120breq2d 3994 . . . . . . . 8  |-  ( x  =  q  ->  (
l  <Q  ( x  +Q  y )  <->  l  <Q  ( q  +Q  y ) ) )
2221abbidv 2284 . . . . . . 7  |-  ( x  =  q  ->  { l  |  l  <Q  (
x  +Q  y ) }  =  { l  |  l  <Q  (
q  +Q  y ) } )
2320breq1d 3992 . . . . . . . 8  |-  ( x  =  q  ->  (
( x  +Q  y
)  <Q  u  <->  ( q  +Q  y )  <Q  u
) )
2423abbidv 2284 . . . . . . 7  |-  ( x  =  q  ->  { u  |  ( x  +Q  y )  <Q  u }  =  { u  |  ( q  +Q  y )  <Q  u } )
2522, 24opeq12d 3766 . . . . . 6  |-  ( x  =  q  ->  <. { l  |  l  <Q  (
x  +Q  y ) } ,  { u  |  ( x  +Q  y )  <Q  u } >.  =  <. { l  |  l  <Q  (
q  +Q  y ) } ,  { u  |  ( q  +Q  y )  <Q  u } >. )
2625oveq2d 5858 . . . . 5  |-  ( x  =  q  ->  ( L  +P.  <. { l  |  l  <Q  ( x  +Q  y ) } ,  { u  |  (
x  +Q  y ) 
<Q  u } >. )  =  ( L  +P.  <. { l  |  l 
<Q  ( q  +Q  y
) } ,  {
u  |  ( q  +Q  y )  <Q  u } >. ) )
2719, 26breq12d 3995 . . . 4  |-  ( x  =  q  ->  ( <. { l  |  l 
<Q  ( F `  x
) } ,  {
u  |  ( F `
 x )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  ( x  +Q  y ) } ,  { u  |  (
x  +Q  y ) 
<Q  u } >. )  <->  <. { l  |  l 
<Q  ( F `  q
) } ,  {
u  |  ( F `
 q )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  ( q  +Q  y ) } ,  { u  |  (
q  +Q  y ) 
<Q  u } >. )
) )
2814, 20oveq12d 5860 . . . . . . . 8  |-  ( x  =  q  ->  (
( F `  x
)  +Q  ( x  +Q  y ) )  =  ( ( F `
 q )  +Q  ( q  +Q  y
) ) )
2928breq2d 3994 . . . . . . 7  |-  ( x  =  q  ->  (
l  <Q  ( ( F `
 x )  +Q  ( x  +Q  y
) )  <->  l  <Q  ( ( F `  q
)  +Q  ( q  +Q  y ) ) ) )
3029abbidv 2284 . . . . . 6  |-  ( x  =  q  ->  { l  |  l  <Q  (
( F `  x
)  +Q  ( x  +Q  y ) ) }  =  { l  |  l  <Q  (
( F `  q
)  +Q  ( q  +Q  y ) ) } )
3128breq1d 3992 . . . . . . 7  |-  ( x  =  q  ->  (
( ( F `  x )  +Q  (
x  +Q  y ) )  <Q  u  <->  ( ( F `  q )  +Q  ( q  +Q  y
) )  <Q  u
) )
3231abbidv 2284 . . . . . 6  |-  ( x  =  q  ->  { u  |  ( ( F `
 x )  +Q  ( x  +Q  y
) )  <Q  u }  =  { u  |  ( ( F `
 q )  +Q  ( q  +Q  y
) )  <Q  u } )
3330, 32opeq12d 3766 . . . . 5  |-  ( x  =  q  ->  <. { l  |  l  <Q  (
( F `  x
)  +Q  ( x  +Q  y ) ) } ,  { u  |  ( ( F `
 x )  +Q  ( x  +Q  y
) )  <Q  u } >.  =  <. { l  |  l  <Q  (
( F `  q
)  +Q  ( q  +Q  y ) ) } ,  { u  |  ( ( F `
 q )  +Q  ( q  +Q  y
) )  <Q  u } >. )
3433breq2d 3994 . . . 4  |-  ( x  =  q  ->  ( L  <P  <. { l  |  l  <Q  ( ( F `  x )  +Q  ( x  +Q  y
) ) } ,  { u  |  (
( F `  x
)  +Q  ( x  +Q  y ) ) 
<Q  u } >.  <->  L  <P  <. { l  |  l 
<Q  ( ( F `  q )  +Q  (
q  +Q  y ) ) } ,  {
u  |  ( ( F `  q )  +Q  ( q  +Q  y ) )  <Q  u } >. ) )
3527, 34anbi12d 465 . . 3  |-  ( x  =  q  ->  (
( <. { l  |  l  <Q  ( F `  x ) } ,  { u  |  ( F `  x )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  ( x  +Q  y ) } ,  { u  |  (
x  +Q  y ) 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  x
)  +Q  ( x  +Q  y ) ) } ,  { u  |  ( ( F `
 x )  +Q  ( x  +Q  y
) )  <Q  u } >. )  <->  ( <. { l  |  l  <Q 
( F `  q
) } ,  {
u  |  ( F `
 q )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  ( q  +Q  y ) } ,  { u  |  (
q  +Q  y ) 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  q
)  +Q  ( q  +Q  y ) ) } ,  { u  |  ( ( F `
 q )  +Q  ( q  +Q  y
) )  <Q  u } >. ) ) )
36 oveq2 5850 . . . . . . . . 9  |-  ( y  =  r  ->  (
q  +Q  y )  =  ( q  +Q  r ) )
3736breq2d 3994 . . . . . . . 8  |-  ( y  =  r  ->  (
l  <Q  ( q  +Q  y )  <->  l  <Q  ( q  +Q  r ) ) )
3837abbidv 2284 . . . . . . 7  |-  ( y  =  r  ->  { l  |  l  <Q  (
q  +Q  y ) }  =  { l  |  l  <Q  (
q  +Q  r ) } )
3936breq1d 3992 . . . . . . . 8  |-  ( y  =  r  ->  (
( q  +Q  y
)  <Q  u  <->  ( q  +Q  r )  <Q  u
) )
4039abbidv 2284 . . . . . . 7  |-  ( y  =  r  ->  { u  |  ( q  +Q  y )  <Q  u }  =  { u  |  ( q  +Q  r )  <Q  u } )
4138, 40opeq12d 3766 . . . . . 6  |-  ( y  =  r  ->  <. { l  |  l  <Q  (
q  +Q  y ) } ,  { u  |  ( q  +Q  y )  <Q  u } >.  =  <. { l  |  l  <Q  (
q  +Q  r ) } ,  { u  |  ( q  +Q  r )  <Q  u } >. )
4241oveq2d 5858 . . . . 5  |-  ( y  =  r  ->  ( L  +P.  <. { l  |  l  <Q  ( q  +Q  y ) } ,  { u  |  (
q  +Q  y ) 
<Q  u } >. )  =  ( L  +P.  <. { l  |  l 
<Q  ( q  +Q  r
) } ,  {
u  |  ( q  +Q  r )  <Q  u } >. ) )
4342breq2d 3994 . . . 4  |-  ( y  =  r  ->  ( <. { l  |  l 
<Q  ( F `  q
) } ,  {
u  |  ( F `
 q )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  ( q  +Q  y ) } ,  { u  |  (
q  +Q  y ) 
<Q  u } >. )  <->  <. { l  |  l 
<Q  ( F `  q
) } ,  {
u  |  ( F `
 q )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  ( q  +Q  r ) } ,  { u  |  (
q  +Q  r ) 
<Q  u } >. )
) )
4436oveq2d 5858 . . . . . . . 8  |-  ( y  =  r  ->  (
( F `  q
)  +Q  ( q  +Q  y ) )  =  ( ( F `
 q )  +Q  ( q  +Q  r
) ) )
4544breq2d 3994 . . . . . . 7  |-  ( y  =  r  ->  (
l  <Q  ( ( F `
 q )  +Q  ( q  +Q  y
) )  <->  l  <Q  ( ( F `  q
)  +Q  ( q  +Q  r ) ) ) )
4645abbidv 2284 . . . . . 6  |-  ( y  =  r  ->  { l  |  l  <Q  (
( F `  q
)  +Q  ( q  +Q  y ) ) }  =  { l  |  l  <Q  (
( F `  q
)  +Q  ( q  +Q  r ) ) } )
4744breq1d 3992 . . . . . . 7  |-  ( y  =  r  ->  (
( ( F `  q )  +Q  (
q  +Q  y ) )  <Q  u  <->  ( ( F `  q )  +Q  ( q  +Q  r
) )  <Q  u
) )
4847abbidv 2284 . . . . . 6  |-  ( y  =  r  ->  { u  |  ( ( F `
 q )  +Q  ( q  +Q  y
) )  <Q  u }  =  { u  |  ( ( F `
 q )  +Q  ( q  +Q  r
) )  <Q  u } )
4946, 48opeq12d 3766 . . . . 5  |-  ( y  =  r  ->  <. { l  |  l  <Q  (
( F `  q
)  +Q  ( q  +Q  y ) ) } ,  { u  |  ( ( F `
 q )  +Q  ( q  +Q  y
) )  <Q  u } >.  =  <. { l  |  l  <Q  (
( F `  q
)  +Q  ( q  +Q  r ) ) } ,  { u  |  ( ( F `
 q )  +Q  ( q  +Q  r
) )  <Q  u } >. )
5049breq2d 3994 . . . 4  |-  ( y  =  r  ->  ( L  <P  <. { l  |  l  <Q  ( ( F `  q )  +Q  ( q  +Q  y
) ) } ,  { u  |  (
( F `  q
)  +Q  ( q  +Q  y ) ) 
<Q  u } >.  <->  L  <P  <. { l  |  l 
<Q  ( ( F `  q )  +Q  (
q  +Q  r ) ) } ,  {
u  |  ( ( F `  q )  +Q  ( q  +Q  r ) )  <Q  u } >. ) )
5143, 50anbi12d 465 . . 3  |-  ( y  =  r  ->  (
( <. { l  |  l  <Q  ( F `  q ) } ,  { u  |  ( F `  q )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  ( q  +Q  y ) } ,  { u  |  (
q  +Q  y ) 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  q
)  +Q  ( q  +Q  y ) ) } ,  { u  |  ( ( F `
 q )  +Q  ( q  +Q  y
) )  <Q  u } >. )  <->  ( <. { l  |  l  <Q 
( F `  q
) } ,  {
u  |  ( F `
 q )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  ( q  +Q  r ) } ,  { u  |  (
q  +Q  r ) 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  q
)  +Q  ( q  +Q  r ) ) } ,  { u  |  ( ( F `
 q )  +Q  ( q  +Q  r
) )  <Q  u } >. ) ) )
5235, 51cbvral2v 2705 . 2  |-  ( A. x  e.  Q.  A. y  e.  Q.  ( <. { l  |  l  <Q  ( F `  x ) } ,  { u  |  ( F `  x )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l 
<Q  ( x  +Q  y
) } ,  {
u  |  ( x  +Q  y )  <Q  u } >. )  /\  L  <P 
<. { l  |  l 
<Q  ( ( F `  x )  +Q  (
x  +Q  y ) ) } ,  {
u  |  ( ( F `  x )  +Q  ( x  +Q  y ) )  <Q  u } >. )  <->  A. q  e.  Q.  A. r  e. 
Q.  ( <. { l  |  l  <Q  ( F `  q ) } ,  { u  |  ( F `  q )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l 
<Q  ( q  +Q  r
) } ,  {
u  |  ( q  +Q  r )  <Q  u } >. )  /\  L  <P 
<. { l  |  l 
<Q  ( ( F `  q )  +Q  (
q  +Q  r ) ) } ,  {
u  |  ( ( F `  q )  +Q  ( q  +Q  r ) )  <Q  u } >. ) )
5313, 52sylib 121 1  |-  ( ph  ->  A. q  e.  Q.  A. r  e.  Q.  ( <. { l  |  l 
<Q  ( F `  q
) } ,  {
u  |  ( F `
 q )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  ( q  +Q  r ) } ,  { u  |  (
q  +Q  r ) 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  q
)  +Q  ( q  +Q  r ) ) } ,  { u  |  ( ( F `
 q )  +Q  ( q  +Q  r
) )  <Q  u } >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   {cab 2151   A.wral 2444   E.wrex 2445   {crab 2448   <.cop 3579   class class class wbr 3982   -->wf 5184   ` cfv 5188  (class class class)co 5842   Q.cnq 7221    +Q cplq 7223    <Q cltq 7226    +P. cpp 7234    <P cltp 7236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-2o 6385  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-enq0 7365  df-nq0 7366  df-0nq0 7367  df-plq0 7368  df-mq0 7369  df-inp 7407  df-iplp 7409  df-iltp 7411
This theorem is referenced by:  cauappcvgpr  7603
  Copyright terms: Public domain W3C validator