ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cc4 Unicode version

Theorem cc4 7332
Description: Countable choice by showing the existence of a function 
f which can choose a value at each index 
n such that  ch holds. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 1-May-2024.)
Hypotheses
Ref Expression
cc4.cc  |-  ( ph  -> CCHOICE )
cc4.1  |-  ( ph  ->  A  e.  V )
cc4.2  |-  ( ph  ->  N  ~~  om )
cc4.3  |-  ( x  =  ( f `  n )  ->  ( ps 
<->  ch ) )
cc4.m  |-  ( ph  ->  A. n  e.  N  E. x  e.  A  ps )
Assertion
Ref Expression
cc4  |-  ( ph  ->  E. f ( f : N --> A  /\  A. n  e.  N  ch ) )
Distinct variable groups:    A, f, n, x    f, N, n    ch, x    ph, f, n    ps, f
Allowed substitution hints:    ph( x)    ps( x, n)    ch( f, n)    N( x)    V( x, f, n)

Proof of Theorem cc4
StepHypRef Expression
1 cc4.cc . 2  |-  ( ph  -> CCHOICE )
2 cc4.1 . 2  |-  ( ph  ->  A  e.  V )
3 nfcv 2336 . 2  |-  F/_ n A
4 cc4.2 . 2  |-  ( ph  ->  N  ~~  om )
5 cc4.3 . 2  |-  ( x  =  ( f `  n )  ->  ( ps 
<->  ch ) )
6 cc4.m . 2  |-  ( ph  ->  A. n  e.  N  E. x  e.  A  ps )
71, 2, 3, 4, 5, 6cc4f 7331 1  |-  ( ph  ->  E. f ( f : N --> A  /\  A. n  e.  N  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1503    e. wcel 2164   A.wral 2472   E.wrex 2473   class class class wbr 4030   omcom 4623   -->wf 5251   ` cfv 5255    ~~ cen 6794  CCHOICEwacc 7324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-2nd 6196  df-er 6589  df-en 6797  df-cc 7325
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator