ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cc4 Unicode version

Theorem cc4 7456
Description: Countable choice by showing the existence of a function 
f which can choose a value at each index 
n such that  ch holds. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 1-May-2024.)
Hypotheses
Ref Expression
cc4.cc  |-  ( ph  -> CCHOICE )
cc4.1  |-  ( ph  ->  A  e.  V )
cc4.2  |-  ( ph  ->  N  ~~  om )
cc4.3  |-  ( x  =  ( f `  n )  ->  ( ps 
<->  ch ) )
cc4.m  |-  ( ph  ->  A. n  e.  N  E. x  e.  A  ps )
Assertion
Ref Expression
cc4  |-  ( ph  ->  E. f ( f : N --> A  /\  A. n  e.  N  ch ) )
Distinct variable groups:    A, f, n, x    f, N, n    ch, x    ph, f, n    ps, f
Allowed substitution hints:    ph( x)    ps( x, n)    ch( f, n)    N( x)    V( x, f, n)

Proof of Theorem cc4
StepHypRef Expression
1 cc4.cc . 2  |-  ( ph  -> CCHOICE )
2 cc4.1 . 2  |-  ( ph  ->  A  e.  V )
3 nfcv 2372 . 2  |-  F/_ n A
4 cc4.2 . 2  |-  ( ph  ->  N  ~~  om )
5 cc4.3 . 2  |-  ( x  =  ( f `  n )  ->  ( ps 
<->  ch ) )
6 cc4.m . 2  |-  ( ph  ->  A. n  e.  N  E. x  e.  A  ps )
71, 2, 3, 4, 5, 6cc4f 7455 1  |-  ( ph  ->  E. f ( f : N --> A  /\  A. n  e.  N  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395   E.wex 1538    e. wcel 2200   A.wral 2508   E.wrex 2509   class class class wbr 4083   omcom 4682   -->wf 5314   ` cfv 5318    ~~ cen 6885  CCHOICEwacc 7448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-2nd 6287  df-er 6680  df-en 6888  df-cc 7449
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator