ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cc4 Unicode version

Theorem cc4 7244
Description: Countable choice by showing the existence of a function 
f which can choose a value at each index 
n such that  ch holds. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 1-May-2024.)
Hypotheses
Ref Expression
cc4.cc  |-  ( ph  -> CCHOICE )
cc4.1  |-  ( ph  ->  A  e.  V )
cc4.2  |-  ( ph  ->  N  ~~  om )
cc4.3  |-  ( x  =  ( f `  n )  ->  ( ps 
<->  ch ) )
cc4.m  |-  ( ph  ->  A. n  e.  N  E. x  e.  A  ps )
Assertion
Ref Expression
cc4  |-  ( ph  ->  E. f ( f : N --> A  /\  A. n  e.  N  ch ) )
Distinct variable groups:    A, f, n, x    f, N, n    ch, x    ph, f, n    ps, f
Allowed substitution hints:    ph( x)    ps( x, n)    ch( f, n)    N( x)    V( x, f, n)

Proof of Theorem cc4
StepHypRef Expression
1 cc4.cc . 2  |-  ( ph  -> CCHOICE )
2 cc4.1 . 2  |-  ( ph  ->  A  e.  V )
3 nfcv 2317 . 2  |-  F/_ n A
4 cc4.2 . 2  |-  ( ph  ->  N  ~~  om )
5 cc4.3 . 2  |-  ( x  =  ( f `  n )  ->  ( ps 
<->  ch ) )
6 cc4.m . 2  |-  ( ph  ->  A. n  e.  N  E. x  e.  A  ps )
71, 2, 3, 4, 5, 6cc4f 7243 1  |-  ( ph  ->  E. f ( f : N --> A  /\  A. n  e.  N  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353   E.wex 1490    e. wcel 2146   A.wral 2453   E.wrex 2454   class class class wbr 3998   omcom 4583   -->wf 5204   ` cfv 5208    ~~ cen 6728  CCHOICEwacc 7236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-iinf 4581
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-2nd 6132  df-er 6525  df-en 6731  df-cc 7237
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator