ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cc4 Unicode version

Theorem cc4 7382
Description: Countable choice by showing the existence of a function 
f which can choose a value at each index 
n such that  ch holds. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 1-May-2024.)
Hypotheses
Ref Expression
cc4.cc  |-  ( ph  -> CCHOICE )
cc4.1  |-  ( ph  ->  A  e.  V )
cc4.2  |-  ( ph  ->  N  ~~  om )
cc4.3  |-  ( x  =  ( f `  n )  ->  ( ps 
<->  ch ) )
cc4.m  |-  ( ph  ->  A. n  e.  N  E. x  e.  A  ps )
Assertion
Ref Expression
cc4  |-  ( ph  ->  E. f ( f : N --> A  /\  A. n  e.  N  ch ) )
Distinct variable groups:    A, f, n, x    f, N, n    ch, x    ph, f, n    ps, f
Allowed substitution hints:    ph( x)    ps( x, n)    ch( f, n)    N( x)    V( x, f, n)

Proof of Theorem cc4
StepHypRef Expression
1 cc4.cc . 2  |-  ( ph  -> CCHOICE )
2 cc4.1 . 2  |-  ( ph  ->  A  e.  V )
3 nfcv 2348 . 2  |-  F/_ n A
4 cc4.2 . 2  |-  ( ph  ->  N  ~~  om )
5 cc4.3 . 2  |-  ( x  =  ( f `  n )  ->  ( ps 
<->  ch ) )
6 cc4.m . 2  |-  ( ph  ->  A. n  e.  N  E. x  e.  A  ps )
71, 2, 3, 4, 5, 6cc4f 7381 1  |-  ( ph  ->  E. f ( f : N --> A  /\  A. n  e.  N  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   E.wex 1515    e. wcel 2176   A.wral 2484   E.wrex 2485   class class class wbr 4044   omcom 4638   -->wf 5267   ` cfv 5271    ~~ cen 6825  CCHOICEwacc 7374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-2nd 6227  df-er 6620  df-en 6828  df-cc 7375
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator