ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cc4 GIF version

Theorem cc4 7424
Description: Countable choice by showing the existence of a function 𝑓 which can choose a value at each index 𝑛 such that 𝜒 holds. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 1-May-2024.)
Hypotheses
Ref Expression
cc4.cc (𝜑CCHOICE)
cc4.1 (𝜑𝐴𝑉)
cc4.2 (𝜑𝑁 ≈ ω)
cc4.3 (𝑥 = (𝑓𝑛) → (𝜓𝜒))
cc4.m (𝜑 → ∀𝑛𝑁𝑥𝐴 𝜓)
Assertion
Ref Expression
cc4 (𝜑 → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜒))
Distinct variable groups:   𝐴,𝑓,𝑛,𝑥   𝑓,𝑁,𝑛   𝜒,𝑥   𝜑,𝑓,𝑛   𝜓,𝑓
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑛)   𝜒(𝑓,𝑛)   𝑁(𝑥)   𝑉(𝑥,𝑓,𝑛)

Proof of Theorem cc4
StepHypRef Expression
1 cc4.cc . 2 (𝜑CCHOICE)
2 cc4.1 . 2 (𝜑𝐴𝑉)
3 nfcv 2352 . 2 𝑛𝐴
4 cc4.2 . 2 (𝜑𝑁 ≈ ω)
5 cc4.3 . 2 (𝑥 = (𝑓𝑛) → (𝜓𝜒))
6 cc4.m . 2 (𝜑 → ∀𝑛𝑁𝑥𝐴 𝜓)
71, 2, 3, 4, 5, 6cc4f 7423 1 (𝜑 → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1375  wex 1518  wcel 2180  wral 2488  wrex 2489   class class class wbr 4062  ωcom 4659  wf 5290  cfv 5294  cen 6855  CCHOICEwacc 7416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-iinf 4657
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-2nd 6257  df-er 6650  df-en 6858  df-cc 7417
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator