| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > cc4 | GIF version | ||
| Description: Countable choice by showing the existence of a function 𝑓 which can choose a value at each index 𝑛 such that 𝜒 holds. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 1-May-2024.) | 
| Ref | Expression | 
|---|---|
| cc4.cc | ⊢ (𝜑 → CCHOICE) | 
| cc4.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) | 
| cc4.2 | ⊢ (𝜑 → 𝑁 ≈ ω) | 
| cc4.3 | ⊢ (𝑥 = (𝑓‘𝑛) → (𝜓 ↔ 𝜒)) | 
| cc4.m | ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜓) | 
| Ref | Expression | 
|---|---|
| cc4 | ⊢ (𝜑 → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cc4.cc | . 2 ⊢ (𝜑 → CCHOICE) | |
| 2 | cc4.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | nfcv 2339 | . 2 ⊢ Ⅎ𝑛𝐴 | |
| 4 | cc4.2 | . 2 ⊢ (𝜑 → 𝑁 ≈ ω) | |
| 5 | cc4.3 | . 2 ⊢ (𝑥 = (𝑓‘𝑛) → (𝜓 ↔ 𝜒)) | |
| 6 | cc4.m | . 2 ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜓) | |
| 7 | 1, 2, 3, 4, 5, 6 | cc4f 7336 | 1 ⊢ (𝜑 → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜒)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∃wex 1506 ∈ wcel 2167 ∀wral 2475 ∃wrex 2476 class class class wbr 4033 ωcom 4626 ⟶wf 5254 ‘cfv 5258 ≈ cen 6797 CCHOICEwacc 7329 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-2nd 6199 df-er 6592 df-en 6800 df-cc 7330 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |