Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cc4 | GIF version |
Description: Countable choice by showing the existence of a function 𝑓 which can choose a value at each index 𝑛 such that 𝜒 holds. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 1-May-2024.) |
Ref | Expression |
---|---|
cc4.cc | ⊢ (𝜑 → CCHOICE) |
cc4.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
cc4.2 | ⊢ (𝜑 → 𝑁 ≈ ω) |
cc4.3 | ⊢ (𝑥 = (𝑓‘𝑛) → (𝜓 ↔ 𝜒)) |
cc4.m | ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜓) |
Ref | Expression |
---|---|
cc4 | ⊢ (𝜑 → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cc4.cc | . 2 ⊢ (𝜑 → CCHOICE) | |
2 | cc4.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | nfcv 2299 | . 2 ⊢ Ⅎ𝑛𝐴 | |
4 | cc4.2 | . 2 ⊢ (𝜑 → 𝑁 ≈ ω) | |
5 | cc4.3 | . 2 ⊢ (𝑥 = (𝑓‘𝑛) → (𝜓 ↔ 𝜒)) | |
6 | cc4.m | . 2 ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜓) | |
7 | 1, 2, 3, 4, 5, 6 | cc4f 7172 | 1 ⊢ (𝜑 → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1335 ∃wex 1472 ∈ wcel 2128 ∀wral 2435 ∃wrex 2436 class class class wbr 3965 ωcom 4547 ⟶wf 5163 ‘cfv 5167 ≈ cen 6676 CCHOICEwacc 7165 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-iinf 4545 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4252 df-iom 4548 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-2nd 6083 df-er 6473 df-en 6679 df-cc 7166 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |