| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cc4 | GIF version | ||
| Description: Countable choice by showing the existence of a function 𝑓 which can choose a value at each index 𝑛 such that 𝜒 holds. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 1-May-2024.) |
| Ref | Expression |
|---|---|
| cc4.cc | ⊢ (𝜑 → CCHOICE) |
| cc4.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| cc4.2 | ⊢ (𝜑 → 𝑁 ≈ ω) |
| cc4.3 | ⊢ (𝑥 = (𝑓‘𝑛) → (𝜓 ↔ 𝜒)) |
| cc4.m | ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜓) |
| Ref | Expression |
|---|---|
| cc4 | ⊢ (𝜑 → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cc4.cc | . 2 ⊢ (𝜑 → CCHOICE) | |
| 2 | cc4.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | nfcv 2352 | . 2 ⊢ Ⅎ𝑛𝐴 | |
| 4 | cc4.2 | . 2 ⊢ (𝜑 → 𝑁 ≈ ω) | |
| 5 | cc4.3 | . 2 ⊢ (𝑥 = (𝑓‘𝑛) → (𝜓 ↔ 𝜒)) | |
| 6 | cc4.m | . 2 ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜓) | |
| 7 | 1, 2, 3, 4, 5, 6 | cc4f 7423 | 1 ⊢ (𝜑 → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1375 ∃wex 1518 ∈ wcel 2180 ∀wral 2488 ∃wrex 2489 class class class wbr 4062 ωcom 4659 ⟶wf 5290 ‘cfv 5294 ≈ cen 6855 CCHOICEwacc 7416 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-iinf 4657 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-2nd 6257 df-er 6650 df-en 6858 df-cc 7417 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |