Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cc4 | GIF version |
Description: Countable choice by showing the existence of a function 𝑓 which can choose a value at each index 𝑛 such that 𝜒 holds. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 1-May-2024.) |
Ref | Expression |
---|---|
cc4.cc | ⊢ (𝜑 → CCHOICE) |
cc4.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
cc4.2 | ⊢ (𝜑 → 𝑁 ≈ ω) |
cc4.3 | ⊢ (𝑥 = (𝑓‘𝑛) → (𝜓 ↔ 𝜒)) |
cc4.m | ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜓) |
Ref | Expression |
---|---|
cc4 | ⊢ (𝜑 → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cc4.cc | . 2 ⊢ (𝜑 → CCHOICE) | |
2 | cc4.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | nfcv 2308 | . 2 ⊢ Ⅎ𝑛𝐴 | |
4 | cc4.2 | . 2 ⊢ (𝜑 → 𝑁 ≈ ω) | |
5 | cc4.3 | . 2 ⊢ (𝑥 = (𝑓‘𝑛) → (𝜓 ↔ 𝜒)) | |
6 | cc4.m | . 2 ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜓) | |
7 | 1, 2, 3, 4, 5, 6 | cc4f 7210 | 1 ⊢ (𝜑 → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∃wex 1480 ∈ wcel 2136 ∀wral 2444 ∃wrex 2445 class class class wbr 3982 ωcom 4567 ⟶wf 5184 ‘cfv 5188 ≈ cen 6704 CCHOICEwacc 7203 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-2nd 6109 df-er 6501 df-en 6707 df-cc 7204 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |