| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cc4 | GIF version | ||
| Description: Countable choice by showing the existence of a function 𝑓 which can choose a value at each index 𝑛 such that 𝜒 holds. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 1-May-2024.) |
| Ref | Expression |
|---|---|
| cc4.cc | ⊢ (𝜑 → CCHOICE) |
| cc4.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| cc4.2 | ⊢ (𝜑 → 𝑁 ≈ ω) |
| cc4.3 | ⊢ (𝑥 = (𝑓‘𝑛) → (𝜓 ↔ 𝜒)) |
| cc4.m | ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜓) |
| Ref | Expression |
|---|---|
| cc4 | ⊢ (𝜑 → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cc4.cc | . 2 ⊢ (𝜑 → CCHOICE) | |
| 2 | cc4.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | nfcv 2349 | . 2 ⊢ Ⅎ𝑛𝐴 | |
| 4 | cc4.2 | . 2 ⊢ (𝜑 → 𝑁 ≈ ω) | |
| 5 | cc4.3 | . 2 ⊢ (𝑥 = (𝑓‘𝑛) → (𝜓 ↔ 𝜒)) | |
| 6 | cc4.m | . 2 ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜓) | |
| 7 | 1, 2, 3, 4, 5, 6 | cc4f 7388 | 1 ⊢ (𝜑 → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∃wex 1516 ∈ wcel 2177 ∀wral 2485 ∃wrex 2486 class class class wbr 4047 ωcom 4642 ⟶wf 5272 ‘cfv 5276 ≈ cen 6832 CCHOICEwacc 7381 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-iinf 4640 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-2nd 6234 df-er 6627 df-en 6835 df-cc 7382 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |