ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnven Unicode version

Theorem cnven 6902
Description: A relational set is equinumerous to its converse. (Contributed by Mario Carneiro, 28-Dec-2014.)
Assertion
Ref Expression
cnven  |-  ( ( Rel  A  /\  A  e.  V )  ->  A  ~~  `' A )

Proof of Theorem cnven
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpr 110 . 2  |-  ( ( Rel  A  /\  A  e.  V )  ->  A  e.  V )
2 cnvexg 5221 . . 3  |-  ( A  e.  V  ->  `' A  e.  _V )
32adantl 277 . 2  |-  ( ( Rel  A  /\  A  e.  V )  ->  `' A  e.  _V )
4 cnvf1o 6313 . . 3  |-  ( Rel 
A  ->  ( x  e.  A  |->  U. `' { x } ) : A -1-1-onto-> `' A )
54adantr 276 . 2  |-  ( ( Rel  A  /\  A  e.  V )  ->  (
x  e.  A  |->  U. `' { x } ) : A -1-1-onto-> `' A )
6 f1oen2g 6848 . 2  |-  ( ( A  e.  V  /\  `' A  e.  _V  /\  ( x  e.  A  |-> 
U. `' { x } ) : A -1-1-onto-> `' A )  ->  A  ~~  `' A )
71, 3, 5, 6syl3anc 1250 1  |-  ( ( Rel  A  /\  A  e.  V )  ->  A  ~~  `' A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2176   _Vcvv 2772   {csn 3633   U.cuni 3850   class class class wbr 4045    |-> cmpt 4106   `'ccnv 4675   Rel wrel 4681   -1-1-onto->wf1o 5271    ~~ cen 6827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-1st 6228  df-2nd 6229  df-en 6830
This theorem is referenced by:  cnvct  6903  relcnvfi  7045  lgsquadlem3  15589
  Copyright terms: Public domain W3C validator