ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnven Unicode version

Theorem cnven 6808
Description: A relational set is equinumerous to its converse. (Contributed by Mario Carneiro, 28-Dec-2014.)
Assertion
Ref Expression
cnven  |-  ( ( Rel  A  /\  A  e.  V )  ->  A  ~~  `' A )

Proof of Theorem cnven
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpr 110 . 2  |-  ( ( Rel  A  /\  A  e.  V )  ->  A  e.  V )
2 cnvexg 5167 . . 3  |-  ( A  e.  V  ->  `' A  e.  _V )
32adantl 277 . 2  |-  ( ( Rel  A  /\  A  e.  V )  ->  `' A  e.  _V )
4 cnvf1o 6226 . . 3  |-  ( Rel 
A  ->  ( x  e.  A  |->  U. `' { x } ) : A -1-1-onto-> `' A )
54adantr 276 . 2  |-  ( ( Rel  A  /\  A  e.  V )  ->  (
x  e.  A  |->  U. `' { x } ) : A -1-1-onto-> `' A )
6 f1oen2g 6755 . 2  |-  ( ( A  e.  V  /\  `' A  e.  _V  /\  ( x  e.  A  |-> 
U. `' { x } ) : A -1-1-onto-> `' A )  ->  A  ~~  `' A )
71, 3, 5, 6syl3anc 1238 1  |-  ( ( Rel  A  /\  A  e.  V )  ->  A  ~~  `' A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2148   _Vcvv 2738   {csn 3593   U.cuni 3810   class class class wbr 4004    |-> cmpt 4065   `'ccnv 4626   Rel wrel 4632   -1-1-onto->wf1o 5216    ~~ cen 6738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-sbc 2964  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-1st 6141  df-2nd 6142  df-en 6741
This theorem is referenced by:  cnvct  6809  relcnvfi  6940
  Copyright terms: Public domain W3C validator