ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvresima GIF version

Theorem cnvresima 5173
Description: An image under the converse of a restriction. (Contributed by Jeff Hankins, 12-Jul-2009.)
Assertion
Ref Expression
cnvresima ((𝐹𝐴) “ 𝐵) = ((𝐹𝐵) ∩ 𝐴)

Proof of Theorem cnvresima
Dummy variables 𝑡 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2775 . . . 4 𝑡 ∈ V
21elima3 5030 . . 3 (𝑡 ∈ ((𝐹𝐴) “ 𝐵) ↔ ∃𝑠(𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ (𝐹𝐴)))
31elima3 5030 . . . . 5 (𝑡 ∈ (𝐹𝐵) ↔ ∃𝑠(𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ 𝐹))
43anbi1i 458 . . . 4 ((𝑡 ∈ (𝐹𝐵) ∧ 𝑡𝐴) ↔ (∃𝑠(𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ 𝐹) ∧ 𝑡𝐴))
5 elin 3356 . . . 4 (𝑡 ∈ ((𝐹𝐵) ∩ 𝐴) ↔ (𝑡 ∈ (𝐹𝐵) ∧ 𝑡𝐴))
6 vex 2775 . . . . . . . . . 10 𝑠 ∈ V
76, 1opelcnv 4861 . . . . . . . . 9 (⟨𝑠, 𝑡⟩ ∈ (𝐹𝐴) ↔ ⟨𝑡, 𝑠⟩ ∈ (𝐹𝐴))
86opelres 4965 . . . . . . . . . 10 (⟨𝑡, 𝑠⟩ ∈ (𝐹𝐴) ↔ (⟨𝑡, 𝑠⟩ ∈ 𝐹𝑡𝐴))
96, 1opelcnv 4861 . . . . . . . . . . 11 (⟨𝑠, 𝑡⟩ ∈ 𝐹 ↔ ⟨𝑡, 𝑠⟩ ∈ 𝐹)
109anbi1i 458 . . . . . . . . . 10 ((⟨𝑠, 𝑡⟩ ∈ 𝐹𝑡𝐴) ↔ (⟨𝑡, 𝑠⟩ ∈ 𝐹𝑡𝐴))
118, 10bitr4i 187 . . . . . . . . 9 (⟨𝑡, 𝑠⟩ ∈ (𝐹𝐴) ↔ (⟨𝑠, 𝑡⟩ ∈ 𝐹𝑡𝐴))
127, 11bitri 184 . . . . . . . 8 (⟨𝑠, 𝑡⟩ ∈ (𝐹𝐴) ↔ (⟨𝑠, 𝑡⟩ ∈ 𝐹𝑡𝐴))
1312anbi2i 457 . . . . . . 7 ((𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ (𝐹𝐴)) ↔ (𝑠𝐵 ∧ (⟨𝑠, 𝑡⟩ ∈ 𝐹𝑡𝐴)))
14 anass 401 . . . . . . 7 (((𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ 𝐹) ∧ 𝑡𝐴) ↔ (𝑠𝐵 ∧ (⟨𝑠, 𝑡⟩ ∈ 𝐹𝑡𝐴)))
1513, 14bitr4i 187 . . . . . 6 ((𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ (𝐹𝐴)) ↔ ((𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ 𝐹) ∧ 𝑡𝐴))
1615exbii 1628 . . . . 5 (∃𝑠(𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ (𝐹𝐴)) ↔ ∃𝑠((𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ 𝐹) ∧ 𝑡𝐴))
17 19.41v 1926 . . . . 5 (∃𝑠((𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ 𝐹) ∧ 𝑡𝐴) ↔ (∃𝑠(𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ 𝐹) ∧ 𝑡𝐴))
1816, 17bitri 184 . . . 4 (∃𝑠(𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ (𝐹𝐴)) ↔ (∃𝑠(𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ 𝐹) ∧ 𝑡𝐴))
194, 5, 183bitr4ri 213 . . 3 (∃𝑠(𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ (𝐹𝐴)) ↔ 𝑡 ∈ ((𝐹𝐵) ∩ 𝐴))
202, 19bitri 184 . 2 (𝑡 ∈ ((𝐹𝐴) “ 𝐵) ↔ 𝑡 ∈ ((𝐹𝐵) ∩ 𝐴))
2120eqriv 2202 1 ((𝐹𝐴) “ 𝐵) = ((𝐹𝐵) ∩ 𝐴)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1373  wex 1515  wcel 2176  cin 3165  cop 3636  ccnv 4675  cres 4678  cima 4679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4046  df-opab 4107  df-xp 4682  df-cnv 4684  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689
This theorem is referenced by:  cnrest  14740
  Copyright terms: Public domain W3C validator