ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvti GIF version

Theorem cnvti 7147
Description: If a relation satisfies a condition corresponding to tightness of an apartness generated by an order, so does its converse. (Contributed by Jim Kingdon, 17-Dec-2021.)
Hypothesis
Ref Expression
eqinfti.ti ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
Assertion
Ref Expression
cnvti ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
Distinct variable groups:   𝑢,𝐴,𝑣   𝜑,𝑢,𝑣   𝑢,𝑅,𝑣

Proof of Theorem cnvti
StepHypRef Expression
1 eqinfti.ti . . 3 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
2 ancom 266 . . 3 ((¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢) ↔ (¬ 𝑣𝑅𝑢 ∧ ¬ 𝑢𝑅𝑣))
31, 2bitrdi 196 . 2 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑣𝑅𝑢 ∧ ¬ 𝑢𝑅𝑣)))
4 brcnvg 4877 . . . . 5 ((𝑢𝐴𝑣𝐴) → (𝑢𝑅𝑣𝑣𝑅𝑢))
54notbid 669 . . . 4 ((𝑢𝐴𝑣𝐴) → (¬ 𝑢𝑅𝑣 ↔ ¬ 𝑣𝑅𝑢))
6 brcnvg 4877 . . . . . 6 ((𝑣𝐴𝑢𝐴) → (𝑣𝑅𝑢𝑢𝑅𝑣))
76ancoms 268 . . . . 5 ((𝑢𝐴𝑣𝐴) → (𝑣𝑅𝑢𝑢𝑅𝑣))
87notbid 669 . . . 4 ((𝑢𝐴𝑣𝐴) → (¬ 𝑣𝑅𝑢 ↔ ¬ 𝑢𝑅𝑣))
95, 8anbi12d 473 . . 3 ((𝑢𝐴𝑣𝐴) → ((¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢) ↔ (¬ 𝑣𝑅𝑢 ∧ ¬ 𝑢𝑅𝑣)))
109adantl 277 . 2 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → ((¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢) ↔ (¬ 𝑣𝑅𝑢 ∧ ¬ 𝑢𝑅𝑣)))
113, 10bitr4d 191 1 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wcel 2178   class class class wbr 4059  ccnv 4692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-cnv 4701
This theorem is referenced by:  eqinfti  7148  infvalti  7150  infclti  7151  inflbti  7152  infglbti  7153  infmoti  7156  infsnti  7158  infisoti  7160  infrenegsupex  9750  infxrnegsupex  11689
  Copyright terms: Public domain W3C validator