ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvti GIF version

Theorem cnvti 7035
Description: If a relation satisfies a condition corresponding to tightness of an apartness generated by an order, so does its converse. (Contributed by Jim Kingdon, 17-Dec-2021.)
Hypothesis
Ref Expression
eqinfti.ti ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
Assertion
Ref Expression
cnvti ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
Distinct variable groups:   𝑢,𝐴,𝑣   𝜑,𝑢,𝑣   𝑢,𝑅,𝑣

Proof of Theorem cnvti
StepHypRef Expression
1 eqinfti.ti . . 3 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
2 ancom 266 . . 3 ((¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢) ↔ (¬ 𝑣𝑅𝑢 ∧ ¬ 𝑢𝑅𝑣))
31, 2bitrdi 196 . 2 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑣𝑅𝑢 ∧ ¬ 𝑢𝑅𝑣)))
4 brcnvg 4822 . . . . 5 ((𝑢𝐴𝑣𝐴) → (𝑢𝑅𝑣𝑣𝑅𝑢))
54notbid 668 . . . 4 ((𝑢𝐴𝑣𝐴) → (¬ 𝑢𝑅𝑣 ↔ ¬ 𝑣𝑅𝑢))
6 brcnvg 4822 . . . . . 6 ((𝑣𝐴𝑢𝐴) → (𝑣𝑅𝑢𝑢𝑅𝑣))
76ancoms 268 . . . . 5 ((𝑢𝐴𝑣𝐴) → (𝑣𝑅𝑢𝑢𝑅𝑣))
87notbid 668 . . . 4 ((𝑢𝐴𝑣𝐴) → (¬ 𝑣𝑅𝑢 ↔ ¬ 𝑢𝑅𝑣))
95, 8anbi12d 473 . . 3 ((𝑢𝐴𝑣𝐴) → ((¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢) ↔ (¬ 𝑣𝑅𝑢 ∧ ¬ 𝑢𝑅𝑣)))
109adantl 277 . 2 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → ((¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢) ↔ (¬ 𝑣𝑅𝑢 ∧ ¬ 𝑢𝑅𝑣)))
113, 10bitr4d 191 1 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wcel 2159   class class class wbr 4017  ccnv 4639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2162  ax-ext 2170  ax-sep 4135  ax-pow 4188  ax-pr 4223
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2040  df-mo 2041  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-v 2753  df-un 3147  df-in 3149  df-ss 3156  df-pw 3591  df-sn 3612  df-pr 3613  df-op 3615  df-br 4018  df-opab 4079  df-cnv 4648
This theorem is referenced by:  eqinfti  7036  infvalti  7038  infclti  7039  inflbti  7040  infglbti  7041  infmoti  7044  infsnti  7046  infisoti  7048  infrenegsupex  9611  infxrnegsupex  11288
  Copyright terms: Public domain W3C validator