ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvti GIF version

Theorem cnvti 6984
Description: If a relation satisfies a condition corresponding to tightness of an apartness generated by an order, so does its converse. (Contributed by Jim Kingdon, 17-Dec-2021.)
Hypothesis
Ref Expression
eqinfti.ti ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
Assertion
Ref Expression
cnvti ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
Distinct variable groups:   𝑢,𝐴,𝑣   𝜑,𝑢,𝑣   𝑢,𝑅,𝑣

Proof of Theorem cnvti
StepHypRef Expression
1 eqinfti.ti . . 3 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
2 ancom 264 . . 3 ((¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢) ↔ (¬ 𝑣𝑅𝑢 ∧ ¬ 𝑢𝑅𝑣))
31, 2bitrdi 195 . 2 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑣𝑅𝑢 ∧ ¬ 𝑢𝑅𝑣)))
4 brcnvg 4785 . . . . 5 ((𝑢𝐴𝑣𝐴) → (𝑢𝑅𝑣𝑣𝑅𝑢))
54notbid 657 . . . 4 ((𝑢𝐴𝑣𝐴) → (¬ 𝑢𝑅𝑣 ↔ ¬ 𝑣𝑅𝑢))
6 brcnvg 4785 . . . . . 6 ((𝑣𝐴𝑢𝐴) → (𝑣𝑅𝑢𝑢𝑅𝑣))
76ancoms 266 . . . . 5 ((𝑢𝐴𝑣𝐴) → (𝑣𝑅𝑢𝑢𝑅𝑣))
87notbid 657 . . . 4 ((𝑢𝐴𝑣𝐴) → (¬ 𝑣𝑅𝑢 ↔ ¬ 𝑢𝑅𝑣))
95, 8anbi12d 465 . . 3 ((𝑢𝐴𝑣𝐴) → ((¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢) ↔ (¬ 𝑣𝑅𝑢 ∧ ¬ 𝑢𝑅𝑣)))
109adantl 275 . 2 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → ((¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢) ↔ (¬ 𝑣𝑅𝑢 ∧ ¬ 𝑢𝑅𝑣)))
113, 10bitr4d 190 1 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wcel 2136   class class class wbr 3982  ccnv 4603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-cnv 4612
This theorem is referenced by:  eqinfti  6985  infvalti  6987  infclti  6988  inflbti  6989  infglbti  6990  infmoti  6993  infsnti  6995  infisoti  6997  infrenegsupex  9532  infxrnegsupex  11204
  Copyright terms: Public domain W3C validator