![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnvti | GIF version |
Description: If a relation satisfies a condition corresponding to tightness of an apartness generated by an order, so does its converse. (Contributed by Jim Kingdon, 17-Dec-2021.) |
Ref | Expression |
---|---|
eqinfti.ti | ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) |
Ref | Expression |
---|---|
cnvti | ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢◡𝑅𝑣 ∧ ¬ 𝑣◡𝑅𝑢))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqinfti.ti | . . 3 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) | |
2 | ancom 266 | . . 3 ⊢ ((¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢) ↔ (¬ 𝑣𝑅𝑢 ∧ ¬ 𝑢𝑅𝑣)) | |
3 | 1, 2 | bitrdi 196 | . 2 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑣𝑅𝑢 ∧ ¬ 𝑢𝑅𝑣))) |
4 | brcnvg 4822 | . . . . 5 ⊢ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) → (𝑢◡𝑅𝑣 ↔ 𝑣𝑅𝑢)) | |
5 | 4 | notbid 668 | . . . 4 ⊢ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) → (¬ 𝑢◡𝑅𝑣 ↔ ¬ 𝑣𝑅𝑢)) |
6 | brcnvg 4822 | . . . . . 6 ⊢ ((𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴) → (𝑣◡𝑅𝑢 ↔ 𝑢𝑅𝑣)) | |
7 | 6 | ancoms 268 | . . . . 5 ⊢ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) → (𝑣◡𝑅𝑢 ↔ 𝑢𝑅𝑣)) |
8 | 7 | notbid 668 | . . . 4 ⊢ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) → (¬ 𝑣◡𝑅𝑢 ↔ ¬ 𝑢𝑅𝑣)) |
9 | 5, 8 | anbi12d 473 | . . 3 ⊢ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) → ((¬ 𝑢◡𝑅𝑣 ∧ ¬ 𝑣◡𝑅𝑢) ↔ (¬ 𝑣𝑅𝑢 ∧ ¬ 𝑢𝑅𝑣))) |
10 | 9 | adantl 277 | . 2 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → ((¬ 𝑢◡𝑅𝑣 ∧ ¬ 𝑣◡𝑅𝑢) ↔ (¬ 𝑣𝑅𝑢 ∧ ¬ 𝑢𝑅𝑣))) |
11 | 3, 10 | bitr4d 191 | 1 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢◡𝑅𝑣 ∧ ¬ 𝑣◡𝑅𝑢))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2159 class class class wbr 4017 ◡ccnv 4639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-14 2162 ax-ext 2170 ax-sep 4135 ax-pow 4188 ax-pr 4223 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-eu 2040 df-mo 2041 df-clab 2175 df-cleq 2181 df-clel 2184 df-nfc 2320 df-v 2753 df-un 3147 df-in 3149 df-ss 3156 df-pw 3591 df-sn 3612 df-pr 3613 df-op 3615 df-br 4018 df-opab 4079 df-cnv 4648 |
This theorem is referenced by: eqinfti 7036 infvalti 7038 infclti 7039 inflbti 7040 infglbti 7041 infmoti 7044 infsnti 7046 infisoti 7048 infrenegsupex 9611 infxrnegsupex 11288 |
Copyright terms: Public domain | W3C validator |