| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnvti | GIF version | ||
| Description: If a relation satisfies a condition corresponding to tightness of an apartness generated by an order, so does its converse. (Contributed by Jim Kingdon, 17-Dec-2021.) |
| Ref | Expression |
|---|---|
| eqinfti.ti | ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) |
| Ref | Expression |
|---|---|
| cnvti | ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢◡𝑅𝑣 ∧ ¬ 𝑣◡𝑅𝑢))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqinfti.ti | . . 3 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) | |
| 2 | ancom 266 | . . 3 ⊢ ((¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢) ↔ (¬ 𝑣𝑅𝑢 ∧ ¬ 𝑢𝑅𝑣)) | |
| 3 | 1, 2 | bitrdi 196 | . 2 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑣𝑅𝑢 ∧ ¬ 𝑢𝑅𝑣))) |
| 4 | brcnvg 4903 | . . . . 5 ⊢ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) → (𝑢◡𝑅𝑣 ↔ 𝑣𝑅𝑢)) | |
| 5 | 4 | notbid 671 | . . . 4 ⊢ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) → (¬ 𝑢◡𝑅𝑣 ↔ ¬ 𝑣𝑅𝑢)) |
| 6 | brcnvg 4903 | . . . . . 6 ⊢ ((𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴) → (𝑣◡𝑅𝑢 ↔ 𝑢𝑅𝑣)) | |
| 7 | 6 | ancoms 268 | . . . . 5 ⊢ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) → (𝑣◡𝑅𝑢 ↔ 𝑢𝑅𝑣)) |
| 8 | 7 | notbid 671 | . . . 4 ⊢ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) → (¬ 𝑣◡𝑅𝑢 ↔ ¬ 𝑢𝑅𝑣)) |
| 9 | 5, 8 | anbi12d 473 | . . 3 ⊢ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) → ((¬ 𝑢◡𝑅𝑣 ∧ ¬ 𝑣◡𝑅𝑢) ↔ (¬ 𝑣𝑅𝑢 ∧ ¬ 𝑢𝑅𝑣))) |
| 10 | 9 | adantl 277 | . 2 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → ((¬ 𝑢◡𝑅𝑣 ∧ ¬ 𝑣◡𝑅𝑢) ↔ (¬ 𝑣𝑅𝑢 ∧ ¬ 𝑢𝑅𝑣))) |
| 11 | 3, 10 | bitr4d 191 | 1 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢◡𝑅𝑣 ∧ ¬ 𝑣◡𝑅𝑢))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2200 class class class wbr 4083 ◡ccnv 4718 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-cnv 4727 |
| This theorem is referenced by: eqinfti 7187 infvalti 7189 infclti 7190 inflbti 7191 infglbti 7192 infmoti 7195 infsnti 7197 infisoti 7199 infrenegsupex 9789 infxrnegsupex 11774 |
| Copyright terms: Public domain | W3C validator |