Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnvti | GIF version |
Description: If a relation satisfies a condition corresponding to tightness of an apartness generated by an order, so does its converse. (Contributed by Jim Kingdon, 17-Dec-2021.) |
Ref | Expression |
---|---|
eqinfti.ti | ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) |
Ref | Expression |
---|---|
cnvti | ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢◡𝑅𝑣 ∧ ¬ 𝑣◡𝑅𝑢))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqinfti.ti | . . 3 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) | |
2 | ancom 264 | . . 3 ⊢ ((¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢) ↔ (¬ 𝑣𝑅𝑢 ∧ ¬ 𝑢𝑅𝑣)) | |
3 | 1, 2 | bitrdi 195 | . 2 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑣𝑅𝑢 ∧ ¬ 𝑢𝑅𝑣))) |
4 | brcnvg 4785 | . . . . 5 ⊢ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) → (𝑢◡𝑅𝑣 ↔ 𝑣𝑅𝑢)) | |
5 | 4 | notbid 657 | . . . 4 ⊢ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) → (¬ 𝑢◡𝑅𝑣 ↔ ¬ 𝑣𝑅𝑢)) |
6 | brcnvg 4785 | . . . . . 6 ⊢ ((𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴) → (𝑣◡𝑅𝑢 ↔ 𝑢𝑅𝑣)) | |
7 | 6 | ancoms 266 | . . . . 5 ⊢ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) → (𝑣◡𝑅𝑢 ↔ 𝑢𝑅𝑣)) |
8 | 7 | notbid 657 | . . . 4 ⊢ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) → (¬ 𝑣◡𝑅𝑢 ↔ ¬ 𝑢𝑅𝑣)) |
9 | 5, 8 | anbi12d 465 | . . 3 ⊢ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) → ((¬ 𝑢◡𝑅𝑣 ∧ ¬ 𝑣◡𝑅𝑢) ↔ (¬ 𝑣𝑅𝑢 ∧ ¬ 𝑢𝑅𝑣))) |
10 | 9 | adantl 275 | . 2 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → ((¬ 𝑢◡𝑅𝑣 ∧ ¬ 𝑣◡𝑅𝑢) ↔ (¬ 𝑣𝑅𝑢 ∧ ¬ 𝑢𝑅𝑣))) |
11 | 3, 10 | bitr4d 190 | 1 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢◡𝑅𝑣 ∧ ¬ 𝑣◡𝑅𝑢))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 2136 class class class wbr 3982 ◡ccnv 4603 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-cnv 4612 |
This theorem is referenced by: eqinfti 6985 infvalti 6987 infclti 6988 inflbti 6989 infglbti 6990 infmoti 6993 infsnti 6995 infisoti 6997 infrenegsupex 9532 infxrnegsupex 11204 |
Copyright terms: Public domain | W3C validator |