| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnvti | GIF version | ||
| Description: If a relation satisfies a condition corresponding to tightness of an apartness generated by an order, so does its converse. (Contributed by Jim Kingdon, 17-Dec-2021.) |
| Ref | Expression |
|---|---|
| eqinfti.ti | ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) |
| Ref | Expression |
|---|---|
| cnvti | ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢◡𝑅𝑣 ∧ ¬ 𝑣◡𝑅𝑢))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqinfti.ti | . . 3 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) | |
| 2 | ancom 266 | . . 3 ⊢ ((¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢) ↔ (¬ 𝑣𝑅𝑢 ∧ ¬ 𝑢𝑅𝑣)) | |
| 3 | 1, 2 | bitrdi 196 | . 2 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑣𝑅𝑢 ∧ ¬ 𝑢𝑅𝑣))) |
| 4 | brcnvg 4860 | . . . . 5 ⊢ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) → (𝑢◡𝑅𝑣 ↔ 𝑣𝑅𝑢)) | |
| 5 | 4 | notbid 669 | . . . 4 ⊢ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) → (¬ 𝑢◡𝑅𝑣 ↔ ¬ 𝑣𝑅𝑢)) |
| 6 | brcnvg 4860 | . . . . . 6 ⊢ ((𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴) → (𝑣◡𝑅𝑢 ↔ 𝑢𝑅𝑣)) | |
| 7 | 6 | ancoms 268 | . . . . 5 ⊢ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) → (𝑣◡𝑅𝑢 ↔ 𝑢𝑅𝑣)) |
| 8 | 7 | notbid 669 | . . . 4 ⊢ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) → (¬ 𝑣◡𝑅𝑢 ↔ ¬ 𝑢𝑅𝑣)) |
| 9 | 5, 8 | anbi12d 473 | . . 3 ⊢ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) → ((¬ 𝑢◡𝑅𝑣 ∧ ¬ 𝑣◡𝑅𝑢) ↔ (¬ 𝑣𝑅𝑢 ∧ ¬ 𝑢𝑅𝑣))) |
| 10 | 9 | adantl 277 | . 2 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → ((¬ 𝑢◡𝑅𝑣 ∧ ¬ 𝑣◡𝑅𝑢) ↔ (¬ 𝑣𝑅𝑢 ∧ ¬ 𝑢𝑅𝑣))) |
| 11 | 3, 10 | bitr4d 191 | 1 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢◡𝑅𝑣 ∧ ¬ 𝑣◡𝑅𝑢))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2176 class class class wbr 4045 ◡ccnv 4675 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4046 df-opab 4107 df-cnv 4684 |
| This theorem is referenced by: eqinfti 7124 infvalti 7126 infclti 7127 inflbti 7128 infglbti 7129 infmoti 7132 infsnti 7134 infisoti 7136 infrenegsupex 9717 infxrnegsupex 11607 |
| Copyright terms: Public domain | W3C validator |