ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decnncl2 GIF version

Theorem decnncl2 9597
Description: Closure for a decimal integer (zero units place). (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
Hypothesis
Ref Expression
decnncl2.1 𝐴 ∈ ℕ
Assertion
Ref Expression
decnncl2 𝐴0 ∈ ℕ

Proof of Theorem decnncl2
StepHypRef Expression
1 dfdec10 9577 . 2 𝐴0 = ((10 · 𝐴) + 0)
2 10nn 9589 . . 3 10 ∈ ℕ
3 decnncl2.1 . . 3 𝐴 ∈ ℕ
42, 3numnncl2 9596 . 2 ((10 · 𝐴) + 0) ∈ ℕ
51, 4eqeltri 2302 1 𝐴0 ∈ ℕ
Colors of variables: wff set class
Syntax hints:  wcel 2200  (class class class)co 6000  0cc0 7995  1c1 7996   + caddc 7998   · cmul 8000  cn 9106  cdc 9574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-sep 4201  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-1rid 8102  ax-0id 8103  ax-cnre 8106
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-iota 5277  df-fv 5325  df-ov 6003  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-5 9168  df-6 9169  df-7 9170  df-8 9171  df-9 9172  df-dec 9575
This theorem is referenced by:  3dec  10931
  Copyright terms: Public domain W3C validator