![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > decnncl2 | GIF version |
Description: Closure for a decimal integer (zero units place). (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
decnncl2.1 | โข ๐ด โ โ |
Ref | Expression |
---|---|
decnncl2 | โข ;๐ด0 โ โ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdec10 9387 | . 2 โข ;๐ด0 = ((;10 ยท ๐ด) + 0) | |
2 | 10nn 9399 | . . 3 โข ;10 โ โ | |
3 | decnncl2.1 | . . 3 โข ๐ด โ โ | |
4 | 2, 3 | numnncl2 9406 | . 2 โข ((;10 ยท ๐ด) + 0) โ โ |
5 | 1, 4 | eqeltri 2250 | 1 โข ;๐ด0 โ โ |
Colors of variables: wff set class |
Syntax hints: โ wcel 2148 (class class class)co 5875 0cc0 7811 1c1 7812 + caddc 7814 ยท cmul 7816 โcn 8919 ;cdc 9384 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 ax-sep 4122 ax-cnex 7902 ax-resscn 7903 ax-1cn 7904 ax-1re 7905 ax-icn 7906 ax-addcl 7907 ax-addrcl 7908 ax-mulcl 7909 ax-mulcom 7912 ax-addass 7913 ax-mulass 7914 ax-distr 7915 ax-1rid 7918 ax-0id 7919 ax-cnre 7922 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2740 df-un 3134 df-in 3136 df-ss 3143 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-br 4005 df-iota 5179 df-fv 5225 df-ov 5878 df-inn 8920 df-2 8978 df-3 8979 df-4 8980 df-5 8981 df-6 8982 df-7 8983 df-8 8984 df-9 8985 df-dec 9385 |
This theorem is referenced by: 3dec 10694 |
Copyright terms: Public domain | W3C validator |