ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decnncl2 GIF version

Theorem decnncl2 9103
Description: Closure for a decimal integer (zero units place). (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
Hypothesis
Ref Expression
decnncl2.1 𝐴 ∈ ℕ
Assertion
Ref Expression
decnncl2 𝐴0 ∈ ℕ

Proof of Theorem decnncl2
StepHypRef Expression
1 dfdec10 9083 . 2 𝐴0 = ((10 · 𝐴) + 0)
2 10nn 9095 . . 3 10 ∈ ℕ
3 decnncl2.1 . . 3 𝐴 ∈ ℕ
42, 3numnncl2 9102 . 2 ((10 · 𝐴) + 0) ∈ ℕ
51, 4eqeltri 2185 1 𝐴0 ∈ ℕ
Colors of variables: wff set class
Syntax hints:  wcel 1461  (class class class)co 5726  0cc0 7541  1c1 7542   + caddc 7544   · cmul 7546  cn 8624  cdc 9080
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-cnex 7630  ax-resscn 7631  ax-1cn 7632  ax-1re 7633  ax-icn 7634  ax-addcl 7635  ax-addrcl 7636  ax-mulcl 7637  ax-mulcom 7640  ax-addass 7641  ax-mulass 7642  ax-distr 7643  ax-1rid 7646  ax-0id 7647  ax-cnre 7650
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-rex 2394  df-rab 2397  df-v 2657  df-un 3039  df-in 3041  df-ss 3048  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-br 3894  df-iota 5044  df-fv 5087  df-ov 5729  df-inn 8625  df-2 8683  df-3 8684  df-4 8685  df-5 8686  df-6 8687  df-7 8688  df-8 8689  df-9 8690  df-dec 9081
This theorem is referenced by:  3dec  10348
  Copyright terms: Public domain W3C validator