| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > decnncl2 | GIF version | ||
| Description: Closure for a decimal integer (zero units place). (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| decnncl2.1 | ⊢ 𝐴 ∈ ℕ |
| Ref | Expression |
|---|---|
| decnncl2 | ⊢ ;𝐴0 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdec10 9522 | . 2 ⊢ ;𝐴0 = ((;10 · 𝐴) + 0) | |
| 2 | 10nn 9534 | . . 3 ⊢ ;10 ∈ ℕ | |
| 3 | decnncl2.1 | . . 3 ⊢ 𝐴 ∈ ℕ | |
| 4 | 2, 3 | numnncl2 9541 | . 2 ⊢ ((;10 · 𝐴) + 0) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2279 | 1 ⊢ ;𝐴0 ∈ ℕ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 (class class class)co 5956 0cc0 7940 1c1 7941 + caddc 7943 · cmul 7945 ℕcn 9051 ;cdc 9519 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-sep 4169 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-mulcom 8041 ax-addass 8042 ax-mulass 8043 ax-distr 8044 ax-1rid 8047 ax-0id 8048 ax-cnre 8051 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-br 4051 df-iota 5240 df-fv 5287 df-ov 5959 df-inn 9052 df-2 9110 df-3 9111 df-4 9112 df-5 9113 df-6 9114 df-7 9115 df-8 9116 df-9 9117 df-dec 9520 |
| This theorem is referenced by: 3dec 10876 |
| Copyright terms: Public domain | W3C validator |