ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decnncl2 GIF version

Theorem decnncl2 9461
Description: Closure for a decimal integer (zero units place). (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
Hypothesis
Ref Expression
decnncl2.1 𝐴 ∈ ℕ
Assertion
Ref Expression
decnncl2 𝐴0 ∈ ℕ

Proof of Theorem decnncl2
StepHypRef Expression
1 dfdec10 9441 . 2 𝐴0 = ((10 · 𝐴) + 0)
2 10nn 9453 . . 3 10 ∈ ℕ
3 decnncl2.1 . . 3 𝐴 ∈ ℕ
42, 3numnncl2 9460 . 2 ((10 · 𝐴) + 0) ∈ ℕ
51, 4eqeltri 2266 1 𝐴0 ∈ ℕ
Colors of variables: wff set class
Syntax hints:  wcel 2164  (class class class)co 5910  0cc0 7862  1c1 7863   + caddc 7865   · cmul 7867  cn 8972  cdc 9438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-sep 4147  ax-cnex 7953  ax-resscn 7954  ax-1cn 7955  ax-1re 7956  ax-icn 7957  ax-addcl 7958  ax-addrcl 7959  ax-mulcl 7960  ax-mulcom 7963  ax-addass 7964  ax-mulass 7965  ax-distr 7966  ax-1rid 7969  ax-0id 7970  ax-cnre 7973
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-iota 5207  df-fv 5254  df-ov 5913  df-inn 8973  df-2 9031  df-3 9032  df-4 9033  df-5 9034  df-6 9035  df-7 9036  df-8 9037  df-9 9038  df-dec 9439
This theorem is referenced by:  3dec  10775
  Copyright terms: Public domain W3C validator