ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  10nn Unicode version

Theorem 10nn 9289
Description: 10 is a positive integer. (Contributed by NM, 8-Nov-2012.) (Revised by AV, 6-Sep-2021.)
Assertion
Ref Expression
10nn  |- ; 1 0  e.  NN

Proof of Theorem 10nn
StepHypRef Expression
1 9p1e10 9276 . 2  |-  ( 9  +  1 )  = ; 1
0
2 9nn 8980 . . 3  |-  9  e.  NN
3 peano2nn 8824 . . 3  |-  ( 9  e.  NN  ->  (
9  +  1 )  e.  NN )
42, 3ax-mp 5 . 2  |-  ( 9  +  1 )  e.  NN
51, 4eqeltrri 2228 1  |- ; 1 0  e.  NN
Colors of variables: wff set class
Syntax hints:    e. wcel 2125  (class class class)co 5814   0cc0 7711   1c1 7712    + caddc 7714   NNcn 8812   9c9 8870  ;cdc 9274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2136  ax-sep 4078  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-mulcom 7812  ax-addass 7813  ax-mulass 7814  ax-distr 7815  ax-1rid 7818  ax-0id 7819  ax-cnre 7822
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ral 2437  df-rex 2438  df-rab 2441  df-v 2711  df-un 3102  df-in 3104  df-ss 3111  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-br 3962  df-iota 5128  df-fv 5171  df-ov 5817  df-inn 8813  df-2 8871  df-3 8872  df-4 8873  df-5 8874  df-6 8875  df-7 8876  df-8 8877  df-9 8878  df-dec 9275
This theorem is referenced by:  10pos  9290  10re  9292  decnncl2  9297  declt  9301  decltc  9302  declti  9311  dec10p  9316  plendx  12284  pleid  12285  pleslid  12286
  Copyright terms: Public domain W3C validator