| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 10nn | Unicode version | ||
| Description: 10 is a positive integer. (Contributed by NM, 8-Nov-2012.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| 10nn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 9p1e10 9580 |
. 2
| |
| 2 | 9nn 9279 |
. . 3
| |
| 3 | peano2nn 9122 |
. . 3
| |
| 4 | 2, 3 | ax-mp 5 |
. 2
|
| 5 | 1, 4 | eqeltrri 2303 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4202 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-1rid 8106 ax-0id 8107 ax-cnre 8110 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-iota 5278 df-fv 5326 df-ov 6004 df-inn 9111 df-2 9169 df-3 9170 df-4 9171 df-5 9172 df-6 9173 df-7 9174 df-8 9175 df-9 9176 df-dec 9579 |
| This theorem is referenced by: 10pos 9594 10re 9596 decnncl2 9601 declt 9605 decltc 9606 declti 9615 dec10p 9620 3dvds 12375 plendx 13233 pleid 13234 pleslid 13235 plendxnn 13236 imasvalstrd 13303 cnfldstr 14522 |
| Copyright terms: Public domain | W3C validator |