![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dedekindeulemeu | GIF version |
Description: Lemma for dedekindeu 14777. Part of proving uniqueness. (Contributed by Jim Kingdon, 31-Jan-2024.) |
Ref | Expression |
---|---|
dedekindeu.lss | ⊢ (𝜑 → 𝐿 ⊆ ℝ) |
dedekindeu.uss | ⊢ (𝜑 → 𝑈 ⊆ ℝ) |
dedekindeu.lm | ⊢ (𝜑 → ∃𝑞 ∈ ℝ 𝑞 ∈ 𝐿) |
dedekindeu.um | ⊢ (𝜑 → ∃𝑟 ∈ ℝ 𝑟 ∈ 𝑈) |
dedekindeu.lr | ⊢ (𝜑 → ∀𝑞 ∈ ℝ (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) |
dedekindeu.ur | ⊢ (𝜑 → ∀𝑟 ∈ ℝ (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) |
dedekindeu.disj | ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) |
dedekindeu.loc | ⊢ (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) |
dedekindeulemeu.are | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
dedekindeulemeu.ac | ⊢ (𝜑 → (∀𝑞 ∈ 𝐿 𝑞 < 𝐴 ∧ ∀𝑟 ∈ 𝑈 𝐴 < 𝑟)) |
dedekindeulemeu.bre | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
dedekindeulemeu.bc | ⊢ (𝜑 → (∀𝑞 ∈ 𝐿 𝑞 < 𝐵 ∧ ∀𝑟 ∈ 𝑈 𝐵 < 𝑟)) |
dedekindeulemeu.lt | ⊢ (𝜑 → 𝐴 < 𝐵) |
Ref | Expression |
---|---|
dedekindeulemeu | ⊢ (𝜑 → ⊥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 4032 | . . . 4 ⊢ (𝑞 = 𝐴 → (𝑞 < 𝐴 ↔ 𝐴 < 𝐴)) | |
2 | dedekindeulemeu.ac | . . . . . 6 ⊢ (𝜑 → (∀𝑞 ∈ 𝐿 𝑞 < 𝐴 ∧ ∀𝑟 ∈ 𝑈 𝐴 < 𝑟)) | |
3 | 2 | simpld 112 | . . . . 5 ⊢ (𝜑 → ∀𝑞 ∈ 𝐿 𝑞 < 𝐴) |
4 | 3 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝐿) → ∀𝑞 ∈ 𝐿 𝑞 < 𝐴) |
5 | simpr 110 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝐿) → 𝐴 ∈ 𝐿) | |
6 | 1, 4, 5 | rspcdva 2869 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝐿) → 𝐴 < 𝐴) |
7 | dedekindeulemeu.are | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
8 | 7 | ltnrd 8131 | . . . 4 ⊢ (𝜑 → ¬ 𝐴 < 𝐴) |
9 | 8 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝐿) → ¬ 𝐴 < 𝐴) |
10 | 6, 9 | pm2.21fal 1384 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝐿) → ⊥) |
11 | breq2 4033 | . . . 4 ⊢ (𝑟 = 𝐵 → (𝐵 < 𝑟 ↔ 𝐵 < 𝐵)) | |
12 | dedekindeulemeu.bc | . . . . . 6 ⊢ (𝜑 → (∀𝑞 ∈ 𝐿 𝑞 < 𝐵 ∧ ∀𝑟 ∈ 𝑈 𝐵 < 𝑟)) | |
13 | 12 | simprd 114 | . . . . 5 ⊢ (𝜑 → ∀𝑟 ∈ 𝑈 𝐵 < 𝑟) |
14 | 13 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → ∀𝑟 ∈ 𝑈 𝐵 < 𝑟) |
15 | simpr 110 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → 𝐵 ∈ 𝑈) | |
16 | 11, 14, 15 | rspcdva 2869 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → 𝐵 < 𝐵) |
17 | dedekindeulemeu.bre | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
18 | 17 | ltnrd 8131 | . . . 4 ⊢ (𝜑 → ¬ 𝐵 < 𝐵) |
19 | 18 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → ¬ 𝐵 < 𝐵) |
20 | 16, 19 | pm2.21fal 1384 | . 2 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → ⊥) |
21 | dedekindeulemeu.lt | . . 3 ⊢ (𝜑 → 𝐴 < 𝐵) | |
22 | breq2 4033 | . . . . 5 ⊢ (𝑟 = 𝐵 → (𝐴 < 𝑟 ↔ 𝐴 < 𝐵)) | |
23 | eleq1 2256 | . . . . . 6 ⊢ (𝑟 = 𝐵 → (𝑟 ∈ 𝑈 ↔ 𝐵 ∈ 𝑈)) | |
24 | 23 | orbi2d 791 | . . . . 5 ⊢ (𝑟 = 𝐵 → ((𝐴 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈) ↔ (𝐴 ∈ 𝐿 ∨ 𝐵 ∈ 𝑈))) |
25 | 22, 24 | imbi12d 234 | . . . 4 ⊢ (𝑟 = 𝐵 → ((𝐴 < 𝑟 → (𝐴 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈)) ↔ (𝐴 < 𝐵 → (𝐴 ∈ 𝐿 ∨ 𝐵 ∈ 𝑈)))) |
26 | breq1 4032 | . . . . . . 7 ⊢ (𝑞 = 𝐴 → (𝑞 < 𝑟 ↔ 𝐴 < 𝑟)) | |
27 | eleq1 2256 | . . . . . . . 8 ⊢ (𝑞 = 𝐴 → (𝑞 ∈ 𝐿 ↔ 𝐴 ∈ 𝐿)) | |
28 | 27 | orbi1d 792 | . . . . . . 7 ⊢ (𝑞 = 𝐴 → ((𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈) ↔ (𝐴 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) |
29 | 26, 28 | imbi12d 234 | . . . . . 6 ⊢ (𝑞 = 𝐴 → ((𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈)) ↔ (𝐴 < 𝑟 → (𝐴 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈)))) |
30 | 29 | ralbidv 2494 | . . . . 5 ⊢ (𝑞 = 𝐴 → (∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈)) ↔ ∀𝑟 ∈ ℝ (𝐴 < 𝑟 → (𝐴 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈)))) |
31 | dedekindeu.loc | . . . . 5 ⊢ (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) | |
32 | 30, 31, 7 | rspcdva 2869 | . . . 4 ⊢ (𝜑 → ∀𝑟 ∈ ℝ (𝐴 < 𝑟 → (𝐴 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) |
33 | 25, 32, 17 | rspcdva 2869 | . . 3 ⊢ (𝜑 → (𝐴 < 𝐵 → (𝐴 ∈ 𝐿 ∨ 𝐵 ∈ 𝑈))) |
34 | 21, 33 | mpd 13 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐿 ∨ 𝐵 ∈ 𝑈)) |
35 | 10, 20, 34 | mpjaodan 799 | 1 ⊢ (𝜑 → ⊥) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 = wceq 1364 ⊥wfal 1369 ∈ wcel 2164 ∀wral 2472 ∃wrex 2473 ∩ cin 3152 ⊆ wss 3153 ∅c0 3446 class class class wbr 4029 ℝcr 7871 < clt 8054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-pre-ltirr 7984 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-xp 4665 df-pnf 8056 df-mnf 8057 df-ltxr 8059 |
This theorem is referenced by: dedekindeu 14777 |
Copyright terms: Public domain | W3C validator |