![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dedekindeulemeu | GIF version |
Description: Lemma for dedekindeu 14140. Part of proving uniqueness. (Contributed by Jim Kingdon, 31-Jan-2024.) |
Ref | Expression |
---|---|
dedekindeu.lss | ⊢ (𝜑 → 𝐿 ⊆ ℝ) |
dedekindeu.uss | ⊢ (𝜑 → 𝑈 ⊆ ℝ) |
dedekindeu.lm | ⊢ (𝜑 → ∃𝑞 ∈ ℝ 𝑞 ∈ 𝐿) |
dedekindeu.um | ⊢ (𝜑 → ∃𝑟 ∈ ℝ 𝑟 ∈ 𝑈) |
dedekindeu.lr | ⊢ (𝜑 → ∀𝑞 ∈ ℝ (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) |
dedekindeu.ur | ⊢ (𝜑 → ∀𝑟 ∈ ℝ (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) |
dedekindeu.disj | ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) |
dedekindeu.loc | ⊢ (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) |
dedekindeulemeu.are | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
dedekindeulemeu.ac | ⊢ (𝜑 → (∀𝑞 ∈ 𝐿 𝑞 < 𝐴 ∧ ∀𝑟 ∈ 𝑈 𝐴 < 𝑟)) |
dedekindeulemeu.bre | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
dedekindeulemeu.bc | ⊢ (𝜑 → (∀𝑞 ∈ 𝐿 𝑞 < 𝐵 ∧ ∀𝑟 ∈ 𝑈 𝐵 < 𝑟)) |
dedekindeulemeu.lt | ⊢ (𝜑 → 𝐴 < 𝐵) |
Ref | Expression |
---|---|
dedekindeulemeu | ⊢ (𝜑 → ⊥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 4008 | . . . 4 ⊢ (𝑞 = 𝐴 → (𝑞 < 𝐴 ↔ 𝐴 < 𝐴)) | |
2 | dedekindeulemeu.ac | . . . . . 6 ⊢ (𝜑 → (∀𝑞 ∈ 𝐿 𝑞 < 𝐴 ∧ ∀𝑟 ∈ 𝑈 𝐴 < 𝑟)) | |
3 | 2 | simpld 112 | . . . . 5 ⊢ (𝜑 → ∀𝑞 ∈ 𝐿 𝑞 < 𝐴) |
4 | 3 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝐿) → ∀𝑞 ∈ 𝐿 𝑞 < 𝐴) |
5 | simpr 110 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝐿) → 𝐴 ∈ 𝐿) | |
6 | 1, 4, 5 | rspcdva 2848 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝐿) → 𝐴 < 𝐴) |
7 | dedekindeulemeu.are | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
8 | 7 | ltnrd 8071 | . . . 4 ⊢ (𝜑 → ¬ 𝐴 < 𝐴) |
9 | 8 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝐿) → ¬ 𝐴 < 𝐴) |
10 | 6, 9 | pm2.21fal 1373 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝐿) → ⊥) |
11 | breq2 4009 | . . . 4 ⊢ (𝑟 = 𝐵 → (𝐵 < 𝑟 ↔ 𝐵 < 𝐵)) | |
12 | dedekindeulemeu.bc | . . . . . 6 ⊢ (𝜑 → (∀𝑞 ∈ 𝐿 𝑞 < 𝐵 ∧ ∀𝑟 ∈ 𝑈 𝐵 < 𝑟)) | |
13 | 12 | simprd 114 | . . . . 5 ⊢ (𝜑 → ∀𝑟 ∈ 𝑈 𝐵 < 𝑟) |
14 | 13 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → ∀𝑟 ∈ 𝑈 𝐵 < 𝑟) |
15 | simpr 110 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → 𝐵 ∈ 𝑈) | |
16 | 11, 14, 15 | rspcdva 2848 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → 𝐵 < 𝐵) |
17 | dedekindeulemeu.bre | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
18 | 17 | ltnrd 8071 | . . . 4 ⊢ (𝜑 → ¬ 𝐵 < 𝐵) |
19 | 18 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → ¬ 𝐵 < 𝐵) |
20 | 16, 19 | pm2.21fal 1373 | . 2 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → ⊥) |
21 | dedekindeulemeu.lt | . . 3 ⊢ (𝜑 → 𝐴 < 𝐵) | |
22 | breq2 4009 | . . . . 5 ⊢ (𝑟 = 𝐵 → (𝐴 < 𝑟 ↔ 𝐴 < 𝐵)) | |
23 | eleq1 2240 | . . . . . 6 ⊢ (𝑟 = 𝐵 → (𝑟 ∈ 𝑈 ↔ 𝐵 ∈ 𝑈)) | |
24 | 23 | orbi2d 790 | . . . . 5 ⊢ (𝑟 = 𝐵 → ((𝐴 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈) ↔ (𝐴 ∈ 𝐿 ∨ 𝐵 ∈ 𝑈))) |
25 | 22, 24 | imbi12d 234 | . . . 4 ⊢ (𝑟 = 𝐵 → ((𝐴 < 𝑟 → (𝐴 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈)) ↔ (𝐴 < 𝐵 → (𝐴 ∈ 𝐿 ∨ 𝐵 ∈ 𝑈)))) |
26 | breq1 4008 | . . . . . . 7 ⊢ (𝑞 = 𝐴 → (𝑞 < 𝑟 ↔ 𝐴 < 𝑟)) | |
27 | eleq1 2240 | . . . . . . . 8 ⊢ (𝑞 = 𝐴 → (𝑞 ∈ 𝐿 ↔ 𝐴 ∈ 𝐿)) | |
28 | 27 | orbi1d 791 | . . . . . . 7 ⊢ (𝑞 = 𝐴 → ((𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈) ↔ (𝐴 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) |
29 | 26, 28 | imbi12d 234 | . . . . . 6 ⊢ (𝑞 = 𝐴 → ((𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈)) ↔ (𝐴 < 𝑟 → (𝐴 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈)))) |
30 | 29 | ralbidv 2477 | . . . . 5 ⊢ (𝑞 = 𝐴 → (∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈)) ↔ ∀𝑟 ∈ ℝ (𝐴 < 𝑟 → (𝐴 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈)))) |
31 | dedekindeu.loc | . . . . 5 ⊢ (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) | |
32 | 30, 31, 7 | rspcdva 2848 | . . . 4 ⊢ (𝜑 → ∀𝑟 ∈ ℝ (𝐴 < 𝑟 → (𝐴 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) |
33 | 25, 32, 17 | rspcdva 2848 | . . 3 ⊢ (𝜑 → (𝐴 < 𝐵 → (𝐴 ∈ 𝐿 ∨ 𝐵 ∈ 𝑈))) |
34 | 21, 33 | mpd 13 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐿 ∨ 𝐵 ∈ 𝑈)) |
35 | 10, 20, 34 | mpjaodan 798 | 1 ⊢ (𝜑 → ⊥) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 708 = wceq 1353 ⊥wfal 1358 ∈ wcel 2148 ∀wral 2455 ∃wrex 2456 ∩ cin 3130 ⊆ wss 3131 ∅c0 3424 class class class wbr 4005 ℝcr 7812 < clt 7994 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-pre-ltirr 7925 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-xp 4634 df-pnf 7996 df-mnf 7997 df-ltxr 7999 |
This theorem is referenced by: dedekindeu 14140 |
Copyright terms: Public domain | W3C validator |