| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dedekindeulemeu | GIF version | ||
| Description: Lemma for dedekindeu 14859. Part of proving uniqueness. (Contributed by Jim Kingdon, 31-Jan-2024.) | 
| Ref | Expression | 
|---|---|
| dedekindeu.lss | ⊢ (𝜑 → 𝐿 ⊆ ℝ) | 
| dedekindeu.uss | ⊢ (𝜑 → 𝑈 ⊆ ℝ) | 
| dedekindeu.lm | ⊢ (𝜑 → ∃𝑞 ∈ ℝ 𝑞 ∈ 𝐿) | 
| dedekindeu.um | ⊢ (𝜑 → ∃𝑟 ∈ ℝ 𝑟 ∈ 𝑈) | 
| dedekindeu.lr | ⊢ (𝜑 → ∀𝑞 ∈ ℝ (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) | 
| dedekindeu.ur | ⊢ (𝜑 → ∀𝑟 ∈ ℝ (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) | 
| dedekindeu.disj | ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) | 
| dedekindeu.loc | ⊢ (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) | 
| dedekindeulemeu.are | ⊢ (𝜑 → 𝐴 ∈ ℝ) | 
| dedekindeulemeu.ac | ⊢ (𝜑 → (∀𝑞 ∈ 𝐿 𝑞 < 𝐴 ∧ ∀𝑟 ∈ 𝑈 𝐴 < 𝑟)) | 
| dedekindeulemeu.bre | ⊢ (𝜑 → 𝐵 ∈ ℝ) | 
| dedekindeulemeu.bc | ⊢ (𝜑 → (∀𝑞 ∈ 𝐿 𝑞 < 𝐵 ∧ ∀𝑟 ∈ 𝑈 𝐵 < 𝑟)) | 
| dedekindeulemeu.lt | ⊢ (𝜑 → 𝐴 < 𝐵) | 
| Ref | Expression | 
|---|---|
| dedekindeulemeu | ⊢ (𝜑 → ⊥) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | breq1 4036 | . . . 4 ⊢ (𝑞 = 𝐴 → (𝑞 < 𝐴 ↔ 𝐴 < 𝐴)) | |
| 2 | dedekindeulemeu.ac | . . . . . 6 ⊢ (𝜑 → (∀𝑞 ∈ 𝐿 𝑞 < 𝐴 ∧ ∀𝑟 ∈ 𝑈 𝐴 < 𝑟)) | |
| 3 | 2 | simpld 112 | . . . . 5 ⊢ (𝜑 → ∀𝑞 ∈ 𝐿 𝑞 < 𝐴) | 
| 4 | 3 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝐿) → ∀𝑞 ∈ 𝐿 𝑞 < 𝐴) | 
| 5 | simpr 110 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝐿) → 𝐴 ∈ 𝐿) | |
| 6 | 1, 4, 5 | rspcdva 2873 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝐿) → 𝐴 < 𝐴) | 
| 7 | dedekindeulemeu.are | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 8 | 7 | ltnrd 8138 | . . . 4 ⊢ (𝜑 → ¬ 𝐴 < 𝐴) | 
| 9 | 8 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝐿) → ¬ 𝐴 < 𝐴) | 
| 10 | 6, 9 | pm2.21fal 1384 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝐿) → ⊥) | 
| 11 | breq2 4037 | . . . 4 ⊢ (𝑟 = 𝐵 → (𝐵 < 𝑟 ↔ 𝐵 < 𝐵)) | |
| 12 | dedekindeulemeu.bc | . . . . . 6 ⊢ (𝜑 → (∀𝑞 ∈ 𝐿 𝑞 < 𝐵 ∧ ∀𝑟 ∈ 𝑈 𝐵 < 𝑟)) | |
| 13 | 12 | simprd 114 | . . . . 5 ⊢ (𝜑 → ∀𝑟 ∈ 𝑈 𝐵 < 𝑟) | 
| 14 | 13 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → ∀𝑟 ∈ 𝑈 𝐵 < 𝑟) | 
| 15 | simpr 110 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → 𝐵 ∈ 𝑈) | |
| 16 | 11, 14, 15 | rspcdva 2873 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → 𝐵 < 𝐵) | 
| 17 | dedekindeulemeu.bre | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 18 | 17 | ltnrd 8138 | . . . 4 ⊢ (𝜑 → ¬ 𝐵 < 𝐵) | 
| 19 | 18 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → ¬ 𝐵 < 𝐵) | 
| 20 | 16, 19 | pm2.21fal 1384 | . 2 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → ⊥) | 
| 21 | dedekindeulemeu.lt | . . 3 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 22 | breq2 4037 | . . . . 5 ⊢ (𝑟 = 𝐵 → (𝐴 < 𝑟 ↔ 𝐴 < 𝐵)) | |
| 23 | eleq1 2259 | . . . . . 6 ⊢ (𝑟 = 𝐵 → (𝑟 ∈ 𝑈 ↔ 𝐵 ∈ 𝑈)) | |
| 24 | 23 | orbi2d 791 | . . . . 5 ⊢ (𝑟 = 𝐵 → ((𝐴 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈) ↔ (𝐴 ∈ 𝐿 ∨ 𝐵 ∈ 𝑈))) | 
| 25 | 22, 24 | imbi12d 234 | . . . 4 ⊢ (𝑟 = 𝐵 → ((𝐴 < 𝑟 → (𝐴 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈)) ↔ (𝐴 < 𝐵 → (𝐴 ∈ 𝐿 ∨ 𝐵 ∈ 𝑈)))) | 
| 26 | breq1 4036 | . . . . . . 7 ⊢ (𝑞 = 𝐴 → (𝑞 < 𝑟 ↔ 𝐴 < 𝑟)) | |
| 27 | eleq1 2259 | . . . . . . . 8 ⊢ (𝑞 = 𝐴 → (𝑞 ∈ 𝐿 ↔ 𝐴 ∈ 𝐿)) | |
| 28 | 27 | orbi1d 792 | . . . . . . 7 ⊢ (𝑞 = 𝐴 → ((𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈) ↔ (𝐴 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) | 
| 29 | 26, 28 | imbi12d 234 | . . . . . 6 ⊢ (𝑞 = 𝐴 → ((𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈)) ↔ (𝐴 < 𝑟 → (𝐴 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈)))) | 
| 30 | 29 | ralbidv 2497 | . . . . 5 ⊢ (𝑞 = 𝐴 → (∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈)) ↔ ∀𝑟 ∈ ℝ (𝐴 < 𝑟 → (𝐴 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈)))) | 
| 31 | dedekindeu.loc | . . . . 5 ⊢ (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) | |
| 32 | 30, 31, 7 | rspcdva 2873 | . . . 4 ⊢ (𝜑 → ∀𝑟 ∈ ℝ (𝐴 < 𝑟 → (𝐴 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) | 
| 33 | 25, 32, 17 | rspcdva 2873 | . . 3 ⊢ (𝜑 → (𝐴 < 𝐵 → (𝐴 ∈ 𝐿 ∨ 𝐵 ∈ 𝑈))) | 
| 34 | 21, 33 | mpd 13 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐿 ∨ 𝐵 ∈ 𝑈)) | 
| 35 | 10, 20, 34 | mpjaodan 799 | 1 ⊢ (𝜑 → ⊥) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 = wceq 1364 ⊥wfal 1369 ∈ wcel 2167 ∀wral 2475 ∃wrex 2476 ∩ cin 3156 ⊆ wss 3157 ∅c0 3450 class class class wbr 4033 ℝcr 7878 < clt 8061 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-pre-ltirr 7991 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-pnf 8063 df-mnf 8064 df-ltxr 8066 | 
| This theorem is referenced by: dedekindeu 14859 | 
| Copyright terms: Public domain | W3C validator |