Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dedekindeulemeu | GIF version |
Description: Lemma for dedekindeu 13241. Part of proving uniqueness. (Contributed by Jim Kingdon, 31-Jan-2024.) |
Ref | Expression |
---|---|
dedekindeu.lss | ⊢ (𝜑 → 𝐿 ⊆ ℝ) |
dedekindeu.uss | ⊢ (𝜑 → 𝑈 ⊆ ℝ) |
dedekindeu.lm | ⊢ (𝜑 → ∃𝑞 ∈ ℝ 𝑞 ∈ 𝐿) |
dedekindeu.um | ⊢ (𝜑 → ∃𝑟 ∈ ℝ 𝑟 ∈ 𝑈) |
dedekindeu.lr | ⊢ (𝜑 → ∀𝑞 ∈ ℝ (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) |
dedekindeu.ur | ⊢ (𝜑 → ∀𝑟 ∈ ℝ (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) |
dedekindeu.disj | ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) |
dedekindeu.loc | ⊢ (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) |
dedekindeulemeu.are | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
dedekindeulemeu.ac | ⊢ (𝜑 → (∀𝑞 ∈ 𝐿 𝑞 < 𝐴 ∧ ∀𝑟 ∈ 𝑈 𝐴 < 𝑟)) |
dedekindeulemeu.bre | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
dedekindeulemeu.bc | ⊢ (𝜑 → (∀𝑞 ∈ 𝐿 𝑞 < 𝐵 ∧ ∀𝑟 ∈ 𝑈 𝐵 < 𝑟)) |
dedekindeulemeu.lt | ⊢ (𝜑 → 𝐴 < 𝐵) |
Ref | Expression |
---|---|
dedekindeulemeu | ⊢ (𝜑 → ⊥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 3985 | . . . 4 ⊢ (𝑞 = 𝐴 → (𝑞 < 𝐴 ↔ 𝐴 < 𝐴)) | |
2 | dedekindeulemeu.ac | . . . . . 6 ⊢ (𝜑 → (∀𝑞 ∈ 𝐿 𝑞 < 𝐴 ∧ ∀𝑟 ∈ 𝑈 𝐴 < 𝑟)) | |
3 | 2 | simpld 111 | . . . . 5 ⊢ (𝜑 → ∀𝑞 ∈ 𝐿 𝑞 < 𝐴) |
4 | 3 | adantr 274 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝐿) → ∀𝑞 ∈ 𝐿 𝑞 < 𝐴) |
5 | simpr 109 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝐿) → 𝐴 ∈ 𝐿) | |
6 | 1, 4, 5 | rspcdva 2835 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝐿) → 𝐴 < 𝐴) |
7 | dedekindeulemeu.are | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
8 | 7 | ltnrd 8010 | . . . 4 ⊢ (𝜑 → ¬ 𝐴 < 𝐴) |
9 | 8 | adantr 274 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝐿) → ¬ 𝐴 < 𝐴) |
10 | 6, 9 | pm2.21fal 1363 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝐿) → ⊥) |
11 | breq2 3986 | . . . 4 ⊢ (𝑟 = 𝐵 → (𝐵 < 𝑟 ↔ 𝐵 < 𝐵)) | |
12 | dedekindeulemeu.bc | . . . . . 6 ⊢ (𝜑 → (∀𝑞 ∈ 𝐿 𝑞 < 𝐵 ∧ ∀𝑟 ∈ 𝑈 𝐵 < 𝑟)) | |
13 | 12 | simprd 113 | . . . . 5 ⊢ (𝜑 → ∀𝑟 ∈ 𝑈 𝐵 < 𝑟) |
14 | 13 | adantr 274 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → ∀𝑟 ∈ 𝑈 𝐵 < 𝑟) |
15 | simpr 109 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → 𝐵 ∈ 𝑈) | |
16 | 11, 14, 15 | rspcdva 2835 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → 𝐵 < 𝐵) |
17 | dedekindeulemeu.bre | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
18 | 17 | ltnrd 8010 | . . . 4 ⊢ (𝜑 → ¬ 𝐵 < 𝐵) |
19 | 18 | adantr 274 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → ¬ 𝐵 < 𝐵) |
20 | 16, 19 | pm2.21fal 1363 | . 2 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → ⊥) |
21 | dedekindeulemeu.lt | . . 3 ⊢ (𝜑 → 𝐴 < 𝐵) | |
22 | breq2 3986 | . . . . 5 ⊢ (𝑟 = 𝐵 → (𝐴 < 𝑟 ↔ 𝐴 < 𝐵)) | |
23 | eleq1 2229 | . . . . . 6 ⊢ (𝑟 = 𝐵 → (𝑟 ∈ 𝑈 ↔ 𝐵 ∈ 𝑈)) | |
24 | 23 | orbi2d 780 | . . . . 5 ⊢ (𝑟 = 𝐵 → ((𝐴 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈) ↔ (𝐴 ∈ 𝐿 ∨ 𝐵 ∈ 𝑈))) |
25 | 22, 24 | imbi12d 233 | . . . 4 ⊢ (𝑟 = 𝐵 → ((𝐴 < 𝑟 → (𝐴 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈)) ↔ (𝐴 < 𝐵 → (𝐴 ∈ 𝐿 ∨ 𝐵 ∈ 𝑈)))) |
26 | breq1 3985 | . . . . . . 7 ⊢ (𝑞 = 𝐴 → (𝑞 < 𝑟 ↔ 𝐴 < 𝑟)) | |
27 | eleq1 2229 | . . . . . . . 8 ⊢ (𝑞 = 𝐴 → (𝑞 ∈ 𝐿 ↔ 𝐴 ∈ 𝐿)) | |
28 | 27 | orbi1d 781 | . . . . . . 7 ⊢ (𝑞 = 𝐴 → ((𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈) ↔ (𝐴 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) |
29 | 26, 28 | imbi12d 233 | . . . . . 6 ⊢ (𝑞 = 𝐴 → ((𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈)) ↔ (𝐴 < 𝑟 → (𝐴 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈)))) |
30 | 29 | ralbidv 2466 | . . . . 5 ⊢ (𝑞 = 𝐴 → (∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈)) ↔ ∀𝑟 ∈ ℝ (𝐴 < 𝑟 → (𝐴 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈)))) |
31 | dedekindeu.loc | . . . . 5 ⊢ (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) | |
32 | 30, 31, 7 | rspcdva 2835 | . . . 4 ⊢ (𝜑 → ∀𝑟 ∈ ℝ (𝐴 < 𝑟 → (𝐴 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) |
33 | 25, 32, 17 | rspcdva 2835 | . . 3 ⊢ (𝜑 → (𝐴 < 𝐵 → (𝐴 ∈ 𝐿 ∨ 𝐵 ∈ 𝑈))) |
34 | 21, 33 | mpd 13 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐿 ∨ 𝐵 ∈ 𝑈)) |
35 | 10, 20, 34 | mpjaodan 788 | 1 ⊢ (𝜑 → ⊥) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 698 = wceq 1343 ⊥wfal 1348 ∈ wcel 2136 ∀wral 2444 ∃wrex 2445 ∩ cin 3115 ⊆ wss 3116 ∅c0 3409 class class class wbr 3982 ℝcr 7752 < clt 7933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-pre-ltirr 7865 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-pnf 7935 df-mnf 7936 df-ltxr 7938 |
This theorem is referenced by: dedekindeu 13241 |
Copyright terms: Public domain | W3C validator |