ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dedekindeulemeu GIF version

Theorem dedekindeulemeu 15209
Description: Lemma for dedekindeu 15210. Part of proving uniqueness. (Contributed by Jim Kingdon, 31-Jan-2024.)
Hypotheses
Ref Expression
dedekindeu.lss (𝜑𝐿 ⊆ ℝ)
dedekindeu.uss (𝜑𝑈 ⊆ ℝ)
dedekindeu.lm (𝜑 → ∃𝑞 ∈ ℝ 𝑞𝐿)
dedekindeu.um (𝜑 → ∃𝑟 ∈ ℝ 𝑟𝑈)
dedekindeu.lr (𝜑 → ∀𝑞 ∈ ℝ (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
dedekindeu.ur (𝜑 → ∀𝑟 ∈ ℝ (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
dedekindeu.disj (𝜑 → (𝐿𝑈) = ∅)
dedekindeu.loc (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
dedekindeulemeu.are (𝜑𝐴 ∈ ℝ)
dedekindeulemeu.ac (𝜑 → (∀𝑞𝐿 𝑞 < 𝐴 ∧ ∀𝑟𝑈 𝐴 < 𝑟))
dedekindeulemeu.bre (𝜑𝐵 ∈ ℝ)
dedekindeulemeu.bc (𝜑 → (∀𝑞𝐿 𝑞 < 𝐵 ∧ ∀𝑟𝑈 𝐵 < 𝑟))
dedekindeulemeu.lt (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
dedekindeulemeu (𝜑 → ⊥)
Distinct variable groups:   𝐴,𝑞,𝑟   𝐵,𝑟   𝐿,𝑞,𝑟   𝑈,𝑞,𝑟
Allowed substitution hints:   𝜑(𝑟,𝑞)   𝐵(𝑞)

Proof of Theorem dedekindeulemeu
StepHypRef Expression
1 breq1 4062 . . . 4 (𝑞 = 𝐴 → (𝑞 < 𝐴𝐴 < 𝐴))
2 dedekindeulemeu.ac . . . . . 6 (𝜑 → (∀𝑞𝐿 𝑞 < 𝐴 ∧ ∀𝑟𝑈 𝐴 < 𝑟))
32simpld 112 . . . . 5 (𝜑 → ∀𝑞𝐿 𝑞 < 𝐴)
43adantr 276 . . . 4 ((𝜑𝐴𝐿) → ∀𝑞𝐿 𝑞 < 𝐴)
5 simpr 110 . . . 4 ((𝜑𝐴𝐿) → 𝐴𝐿)
61, 4, 5rspcdva 2889 . . 3 ((𝜑𝐴𝐿) → 𝐴 < 𝐴)
7 dedekindeulemeu.are . . . . 5 (𝜑𝐴 ∈ ℝ)
87ltnrd 8219 . . . 4 (𝜑 → ¬ 𝐴 < 𝐴)
98adantr 276 . . 3 ((𝜑𝐴𝐿) → ¬ 𝐴 < 𝐴)
106, 9pm2.21fal 1393 . 2 ((𝜑𝐴𝐿) → ⊥)
11 breq2 4063 . . . 4 (𝑟 = 𝐵 → (𝐵 < 𝑟𝐵 < 𝐵))
12 dedekindeulemeu.bc . . . . . 6 (𝜑 → (∀𝑞𝐿 𝑞 < 𝐵 ∧ ∀𝑟𝑈 𝐵 < 𝑟))
1312simprd 114 . . . . 5 (𝜑 → ∀𝑟𝑈 𝐵 < 𝑟)
1413adantr 276 . . . 4 ((𝜑𝐵𝑈) → ∀𝑟𝑈 𝐵 < 𝑟)
15 simpr 110 . . . 4 ((𝜑𝐵𝑈) → 𝐵𝑈)
1611, 14, 15rspcdva 2889 . . 3 ((𝜑𝐵𝑈) → 𝐵 < 𝐵)
17 dedekindeulemeu.bre . . . . 5 (𝜑𝐵 ∈ ℝ)
1817ltnrd 8219 . . . 4 (𝜑 → ¬ 𝐵 < 𝐵)
1918adantr 276 . . 3 ((𝜑𝐵𝑈) → ¬ 𝐵 < 𝐵)
2016, 19pm2.21fal 1393 . 2 ((𝜑𝐵𝑈) → ⊥)
21 dedekindeulemeu.lt . . 3 (𝜑𝐴 < 𝐵)
22 breq2 4063 . . . . 5 (𝑟 = 𝐵 → (𝐴 < 𝑟𝐴 < 𝐵))
23 eleq1 2270 . . . . . 6 (𝑟 = 𝐵 → (𝑟𝑈𝐵𝑈))
2423orbi2d 792 . . . . 5 (𝑟 = 𝐵 → ((𝐴𝐿𝑟𝑈) ↔ (𝐴𝐿𝐵𝑈)))
2522, 24imbi12d 234 . . . 4 (𝑟 = 𝐵 → ((𝐴 < 𝑟 → (𝐴𝐿𝑟𝑈)) ↔ (𝐴 < 𝐵 → (𝐴𝐿𝐵𝑈))))
26 breq1 4062 . . . . . . 7 (𝑞 = 𝐴 → (𝑞 < 𝑟𝐴 < 𝑟))
27 eleq1 2270 . . . . . . . 8 (𝑞 = 𝐴 → (𝑞𝐿𝐴𝐿))
2827orbi1d 793 . . . . . . 7 (𝑞 = 𝐴 → ((𝑞𝐿𝑟𝑈) ↔ (𝐴𝐿𝑟𝑈)))
2926, 28imbi12d 234 . . . . . 6 (𝑞 = 𝐴 → ((𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)) ↔ (𝐴 < 𝑟 → (𝐴𝐿𝑟𝑈))))
3029ralbidv 2508 . . . . 5 (𝑞 = 𝐴 → (∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)) ↔ ∀𝑟 ∈ ℝ (𝐴 < 𝑟 → (𝐴𝐿𝑟𝑈))))
31 dedekindeu.loc . . . . 5 (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
3230, 31, 7rspcdva 2889 . . . 4 (𝜑 → ∀𝑟 ∈ ℝ (𝐴 < 𝑟 → (𝐴𝐿𝑟𝑈)))
3325, 32, 17rspcdva 2889 . . 3 (𝜑 → (𝐴 < 𝐵 → (𝐴𝐿𝐵𝑈)))
3421, 33mpd 13 . 2 (𝜑 → (𝐴𝐿𝐵𝑈))
3510, 20, 34mpjaodan 800 1 (𝜑 → ⊥)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710   = wceq 1373  wfal 1378  wcel 2178  wral 2486  wrex 2487  cin 3173  wss 3174  c0 3468   class class class wbr 4059  cr 7959   < clt 8142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-pre-ltirr 8072
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-xp 4699  df-pnf 8144  df-mnf 8145  df-ltxr 8147
This theorem is referenced by:  dedekindeu  15210
  Copyright terms: Public domain W3C validator