ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divsfvalg GIF version

Theorem divsfvalg 13357
Description: Value of the function in qusval 13351. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.)
Hypotheses
Ref Expression
ercpbl.r (𝜑 Er 𝑉)
ercpbl.v (𝜑𝑉𝑊)
ercpbl.f 𝐹 = (𝑥𝑉 ↦ [𝑥] )
ercpbl.a (𝜑𝐴𝑉)
Assertion
Ref Expression
divsfvalg (𝜑 → (𝐹𝐴) = [𝐴] )
Distinct variable groups:   𝑥,   𝑥,𝐴   𝑥,𝑉   𝜑,𝑥
Allowed substitution hints:   𝐹(𝑥)   𝑊(𝑥)

Proof of Theorem divsfvalg
StepHypRef Expression
1 ercpbl.f . 2 𝐹 = (𝑥𝑉 ↦ [𝑥] )
2 eceq1 6713 . 2 (𝑥 = 𝐴 → [𝑥] = [𝐴] )
3 ercpbl.a . 2 (𝜑𝐴𝑉)
4 ercpbl.v . . 3 (𝜑𝑉𝑊)
5 ercpbl.r . . . 4 (𝜑 Er 𝑉)
65ecss 6721 . . 3 (𝜑 → [𝐴] 𝑉)
74, 6ssexd 4223 . 2 (𝜑 → [𝐴] ∈ V)
81, 2, 3, 7fvmptd3 5727 1 (𝜑 → (𝐹𝐴) = [𝐴] )
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  Vcvv 2799  cmpt 4144  cfv 5317   Er wer 6675  [cec 6676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fv 5325  df-er 6678  df-ec 6680
This theorem is referenced by:  ercpbllemg  13358  qusaddvallemg  13361  qusgrp2  13645  qusring2  14024
  Copyright terms: Public domain W3C validator