ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divsfvalg GIF version

Theorem divsfvalg 13231
Description: Value of the function in qusval 13225. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.)
Hypotheses
Ref Expression
ercpbl.r (𝜑 Er 𝑉)
ercpbl.v (𝜑𝑉𝑊)
ercpbl.f 𝐹 = (𝑥𝑉 ↦ [𝑥] )
ercpbl.a (𝜑𝐴𝑉)
Assertion
Ref Expression
divsfvalg (𝜑 → (𝐹𝐴) = [𝐴] )
Distinct variable groups:   𝑥,   𝑥,𝐴   𝑥,𝑉   𝜑,𝑥
Allowed substitution hints:   𝐹(𝑥)   𝑊(𝑥)

Proof of Theorem divsfvalg
StepHypRef Expression
1 ercpbl.f . 2 𝐹 = (𝑥𝑉 ↦ [𝑥] )
2 eceq1 6667 . 2 (𝑥 = 𝐴 → [𝑥] = [𝐴] )
3 ercpbl.a . 2 (𝜑𝐴𝑉)
4 ercpbl.v . . 3 (𝜑𝑉𝑊)
5 ercpbl.r . . . 4 (𝜑 Er 𝑉)
65ecss 6675 . . 3 (𝜑 → [𝐴] 𝑉)
74, 6ssexd 4191 . 2 (𝜑 → [𝐴] ∈ V)
81, 2, 3, 7fvmptd3 5685 1 (𝜑 → (𝐹𝐴) = [𝐴] )
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177  Vcvv 2773  cmpt 4112  cfv 5279   Er wer 6629  [cec 6630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-pow 4225  ax-pr 4260
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-br 4051  df-opab 4113  df-mpt 4114  df-id 4347  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fv 5287  df-er 6632  df-ec 6634
This theorem is referenced by:  ercpbllemg  13232  qusaddvallemg  13235  qusgrp2  13519  qusring2  13898
  Copyright terms: Public domain W3C validator