![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > divsfvalg | GIF version |
Description: Value of the function in qusval 12762. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.) |
Ref | Expression |
---|---|
ercpbl.r | ⊢ (𝜑 → ∼ Er 𝑉) |
ercpbl.v | ⊢ (𝜑 → 𝑉 ∈ 𝑊) |
ercpbl.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) |
ercpbl.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
divsfvalg | ⊢ (𝜑 → (𝐹‘𝐴) = [𝐴] ∼ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ercpbl.f | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) | |
2 | eceq1 6584 | . 2 ⊢ (𝑥 = 𝐴 → [𝑥] ∼ = [𝐴] ∼ ) | |
3 | ercpbl.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
4 | ercpbl.v | . . 3 ⊢ (𝜑 → 𝑉 ∈ 𝑊) | |
5 | ercpbl.r | . . . 4 ⊢ (𝜑 → ∼ Er 𝑉) | |
6 | 5 | ecss 6590 | . . 3 ⊢ (𝜑 → [𝐴] ∼ ⊆ 𝑉) |
7 | 4, 6 | ssexd 4155 | . 2 ⊢ (𝜑 → [𝐴] ∼ ∈ V) |
8 | 1, 2, 3, 7 | fvmptd3 5622 | 1 ⊢ (𝜑 → (𝐹‘𝐴) = [𝐴] ∼ ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1363 ∈ wcel 2158 Vcvv 2749 ↦ cmpt 4076 ‘cfv 5228 Er wer 6546 [cec 6547 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rex 2471 df-v 2751 df-sbc 2975 df-csb 3070 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fv 5236 df-er 6549 df-ec 6551 |
This theorem is referenced by: ercpbllemg 12768 qusaddvallemg 12771 qusgrp2 13008 qusring2 13314 |
Copyright terms: Public domain | W3C validator |