ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divsfvalg GIF version

Theorem divsfvalg 12972
Description: Value of the function in qusval 12966. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.)
Hypotheses
Ref Expression
ercpbl.r (𝜑 Er 𝑉)
ercpbl.v (𝜑𝑉𝑊)
ercpbl.f 𝐹 = (𝑥𝑉 ↦ [𝑥] )
ercpbl.a (𝜑𝐴𝑉)
Assertion
Ref Expression
divsfvalg (𝜑 → (𝐹𝐴) = [𝐴] )
Distinct variable groups:   𝑥,   𝑥,𝐴   𝑥,𝑉   𝜑,𝑥
Allowed substitution hints:   𝐹(𝑥)   𝑊(𝑥)

Proof of Theorem divsfvalg
StepHypRef Expression
1 ercpbl.f . 2 𝐹 = (𝑥𝑉 ↦ [𝑥] )
2 eceq1 6627 . 2 (𝑥 = 𝐴 → [𝑥] = [𝐴] )
3 ercpbl.a . 2 (𝜑𝐴𝑉)
4 ercpbl.v . . 3 (𝜑𝑉𝑊)
5 ercpbl.r . . . 4 (𝜑 Er 𝑉)
65ecss 6635 . . 3 (𝜑 → [𝐴] 𝑉)
74, 6ssexd 4173 . 2 (𝜑 → [𝐴] ∈ V)
81, 2, 3, 7fvmptd3 5655 1 (𝜑 → (𝐹𝐴) = [𝐴] )
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  Vcvv 2763  cmpt 4094  cfv 5258   Er wer 6589  [cec 6590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fv 5266  df-er 6592  df-ec 6594
This theorem is referenced by:  ercpbllemg  12973  qusaddvallemg  12976  qusgrp2  13243  qusring2  13622
  Copyright terms: Public domain W3C validator