![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > divsfvalg | GIF version |
Description: Value of the function in qusval 12743. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.) |
Ref | Expression |
---|---|
ercpbl.r | ⊢ (𝜑 → ∼ Er 𝑉) |
ercpbl.v | ⊢ (𝜑 → 𝑉 ∈ 𝑊) |
ercpbl.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) |
ercpbl.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
divsfvalg | ⊢ (𝜑 → (𝐹‘𝐴) = [𝐴] ∼ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ercpbl.f | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) | |
2 | eceq1 6569 | . 2 ⊢ (𝑥 = 𝐴 → [𝑥] ∼ = [𝐴] ∼ ) | |
3 | ercpbl.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
4 | ercpbl.v | . . 3 ⊢ (𝜑 → 𝑉 ∈ 𝑊) | |
5 | ercpbl.r | . . . 4 ⊢ (𝜑 → ∼ Er 𝑉) | |
6 | 5 | ecss 6575 | . . 3 ⊢ (𝜑 → [𝐴] ∼ ⊆ 𝑉) |
7 | 4, 6 | ssexd 4143 | . 2 ⊢ (𝜑 → [𝐴] ∼ ∈ V) |
8 | 1, 2, 3, 7 | fvmptd3 5609 | 1 ⊢ (𝜑 → (𝐹‘𝐴) = [𝐴] ∼ ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 Vcvv 2737 ↦ cmpt 4064 ‘cfv 5216 Er wer 6531 [cec 6532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4121 ax-pow 4174 ax-pr 4209 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2739 df-sbc 2963 df-csb 3058 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-br 4004 df-opab 4065 df-mpt 4066 df-id 4293 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-rn 4637 df-res 4638 df-ima 4639 df-iota 5178 df-fun 5218 df-fv 5224 df-er 6534 df-ec 6536 |
This theorem is referenced by: ercpbllemg 12748 qusaddvallemg 12751 |
Copyright terms: Public domain | W3C validator |