ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dom0 Unicode version

Theorem dom0 6935
Description: A set dominated by the empty set is empty. (Contributed by NM, 22-Nov-2004.)
Assertion
Ref Expression
dom0  |-  ( A  ~<_  (/) 
<->  A  =  (/) )

Proof of Theorem dom0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 brdomi 6838 . . 3  |-  ( A  ~<_  (/)  ->  E. x  x : A -1-1-> (/) )
2 f1f 5481 . . . . . 6  |-  ( x : A -1-1-> (/)  ->  x : A --> (/) )
3 f00 5467 . . . . . 6  |-  ( x : A --> (/)  <->  ( x  =  (/)  /\  A  =  (/) ) )
42, 3sylib 122 . . . . 5  |-  ( x : A -1-1-> (/)  ->  (
x  =  (/)  /\  A  =  (/) ) )
54simprd 114 . . . 4  |-  ( x : A -1-1-> (/)  ->  A  =  (/) )
65adantl 277 . . 3  |-  ( ( A  ~<_  (/)  /\  x : A -1-1-> (/) )  ->  A  =  (/) )
71, 6exlimddv 1922 . 2  |-  ( A  ~<_  (/)  ->  A  =  (/) )
8 0ex 4171 . . . 4  |-  (/)  e.  _V
9 domrefg 6858 . . . 4  |-  ( (/)  e.  _V  ->  (/)  ~<_  (/) )
108, 9ax-mp 5 . . 3  |-  (/)  ~<_  (/)
11 breq1 4047 . . 3  |-  ( A  =  (/)  ->  ( A  ~<_  (/) 
<->  (/) 
~<_  (/) ) )
1210, 11mpbiri 168 . 2  |-  ( A  =  (/)  ->  A  ~<_  (/) )
137, 12impbii 126 1  |-  ( A  ~<_  (/) 
<->  A  =  (/) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   _Vcvv 2772   (/)c0 3460   class class class wbr 4044   -->wf 5267   -1-1->wf1 5268    ~<_ cdom 6826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-en 6828  df-dom 6829
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator