ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dom0 Unicode version

Theorem dom0 6899
Description: A set dominated by the empty set is empty. (Contributed by NM, 22-Nov-2004.)
Assertion
Ref Expression
dom0  |-  ( A  ~<_  (/) 
<->  A  =  (/) )

Proof of Theorem dom0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 brdomi 6808 . . 3  |-  ( A  ~<_  (/)  ->  E. x  x : A -1-1-> (/) )
2 f1f 5463 . . . . . 6  |-  ( x : A -1-1-> (/)  ->  x : A --> (/) )
3 f00 5449 . . . . . 6  |-  ( x : A --> (/)  <->  ( x  =  (/)  /\  A  =  (/) ) )
42, 3sylib 122 . . . . 5  |-  ( x : A -1-1-> (/)  ->  (
x  =  (/)  /\  A  =  (/) ) )
54simprd 114 . . . 4  |-  ( x : A -1-1-> (/)  ->  A  =  (/) )
65adantl 277 . . 3  |-  ( ( A  ~<_  (/)  /\  x : A -1-1-> (/) )  ->  A  =  (/) )
71, 6exlimddv 1913 . 2  |-  ( A  ~<_  (/)  ->  A  =  (/) )
8 0ex 4160 . . . 4  |-  (/)  e.  _V
9 domrefg 6826 . . . 4  |-  ( (/)  e.  _V  ->  (/)  ~<_  (/) )
108, 9ax-mp 5 . . 3  |-  (/)  ~<_  (/)
11 breq1 4036 . . 3  |-  ( A  =  (/)  ->  ( A  ~<_  (/) 
<->  (/) 
~<_  (/) ) )
1210, 11mpbiri 168 . 2  |-  ( A  =  (/)  ->  A  ~<_  (/) )
137, 12impbii 126 1  |-  ( A  ~<_  (/) 
<->  A  =  (/) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   _Vcvv 2763   (/)c0 3450   class class class wbr 4033   -->wf 5254   -1-1->wf1 5255    ~<_ cdom 6798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-en 6800  df-dom 6801
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator