| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dom0 | GIF version | ||
| Description: A set dominated by the empty set is empty. (Contributed by NM, 22-Nov-2004.) |
| Ref | Expression |
|---|---|
| dom0 | ⊢ (𝐴 ≼ ∅ ↔ 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdomi 6808 | . . 3 ⊢ (𝐴 ≼ ∅ → ∃𝑥 𝑥:𝐴–1-1→∅) | |
| 2 | f1f 5463 | . . . . . 6 ⊢ (𝑥:𝐴–1-1→∅ → 𝑥:𝐴⟶∅) | |
| 3 | f00 5449 | . . . . . 6 ⊢ (𝑥:𝐴⟶∅ ↔ (𝑥 = ∅ ∧ 𝐴 = ∅)) | |
| 4 | 2, 3 | sylib 122 | . . . . 5 ⊢ (𝑥:𝐴–1-1→∅ → (𝑥 = ∅ ∧ 𝐴 = ∅)) |
| 5 | 4 | simprd 114 | . . . 4 ⊢ (𝑥:𝐴–1-1→∅ → 𝐴 = ∅) |
| 6 | 5 | adantl 277 | . . 3 ⊢ ((𝐴 ≼ ∅ ∧ 𝑥:𝐴–1-1→∅) → 𝐴 = ∅) |
| 7 | 1, 6 | exlimddv 1913 | . 2 ⊢ (𝐴 ≼ ∅ → 𝐴 = ∅) |
| 8 | 0ex 4160 | . . . 4 ⊢ ∅ ∈ V | |
| 9 | domrefg 6826 | . . . 4 ⊢ (∅ ∈ V → ∅ ≼ ∅) | |
| 10 | 8, 9 | ax-mp 5 | . . 3 ⊢ ∅ ≼ ∅ |
| 11 | breq1 4036 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ≼ ∅ ↔ ∅ ≼ ∅)) | |
| 12 | 10, 11 | mpbiri 168 | . 2 ⊢ (𝐴 = ∅ → 𝐴 ≼ ∅) |
| 13 | 7, 12 | impbii 126 | 1 ⊢ (𝐴 ≼ ∅ ↔ 𝐴 = ∅) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ∅c0 3450 class class class wbr 4033 ⟶wf 5254 –1-1→wf1 5255 ≼ cdom 6798 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-en 6800 df-dom 6801 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |