Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dom0 | GIF version |
Description: A set dominated by the empty set is empty. (Contributed by NM, 22-Nov-2004.) |
Ref | Expression |
---|---|
dom0 | ⊢ (𝐴 ≼ ∅ ↔ 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brdomi 6715 | . . 3 ⊢ (𝐴 ≼ ∅ → ∃𝑥 𝑥:𝐴–1-1→∅) | |
2 | f1f 5393 | . . . . . 6 ⊢ (𝑥:𝐴–1-1→∅ → 𝑥:𝐴⟶∅) | |
3 | f00 5379 | . . . . . 6 ⊢ (𝑥:𝐴⟶∅ ↔ (𝑥 = ∅ ∧ 𝐴 = ∅)) | |
4 | 2, 3 | sylib 121 | . . . . 5 ⊢ (𝑥:𝐴–1-1→∅ → (𝑥 = ∅ ∧ 𝐴 = ∅)) |
5 | 4 | simprd 113 | . . . 4 ⊢ (𝑥:𝐴–1-1→∅ → 𝐴 = ∅) |
6 | 5 | adantl 275 | . . 3 ⊢ ((𝐴 ≼ ∅ ∧ 𝑥:𝐴–1-1→∅) → 𝐴 = ∅) |
7 | 1, 6 | exlimddv 1886 | . 2 ⊢ (𝐴 ≼ ∅ → 𝐴 = ∅) |
8 | 0ex 4109 | . . . 4 ⊢ ∅ ∈ V | |
9 | domrefg 6733 | . . . 4 ⊢ (∅ ∈ V → ∅ ≼ ∅) | |
10 | 8, 9 | ax-mp 5 | . . 3 ⊢ ∅ ≼ ∅ |
11 | breq1 3985 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ≼ ∅ ↔ ∅ ≼ ∅)) | |
12 | 10, 11 | mpbiri 167 | . 2 ⊢ (𝐴 = ∅ → 𝐴 ≼ ∅) |
13 | 7, 12 | impbii 125 | 1 ⊢ (𝐴 ≼ ∅ ↔ 𝐴 = ∅) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 Vcvv 2726 ∅c0 3409 class class class wbr 3982 ⟶wf 5184 –1-1→wf1 5185 ≼ cdom 6705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-en 6707 df-dom 6708 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |