| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dom0 | GIF version | ||
| Description: A set dominated by the empty set is empty. (Contributed by NM, 22-Nov-2004.) |
| Ref | Expression |
|---|---|
| dom0 | ⊢ (𝐴 ≼ ∅ ↔ 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdomi 6848 | . . 3 ⊢ (𝐴 ≼ ∅ → ∃𝑥 𝑥:𝐴–1-1→∅) | |
| 2 | f1f 5490 | . . . . . 6 ⊢ (𝑥:𝐴–1-1→∅ → 𝑥:𝐴⟶∅) | |
| 3 | f00 5476 | . . . . . 6 ⊢ (𝑥:𝐴⟶∅ ↔ (𝑥 = ∅ ∧ 𝐴 = ∅)) | |
| 4 | 2, 3 | sylib 122 | . . . . 5 ⊢ (𝑥:𝐴–1-1→∅ → (𝑥 = ∅ ∧ 𝐴 = ∅)) |
| 5 | 4 | simprd 114 | . . . 4 ⊢ (𝑥:𝐴–1-1→∅ → 𝐴 = ∅) |
| 6 | 5 | adantl 277 | . . 3 ⊢ ((𝐴 ≼ ∅ ∧ 𝑥:𝐴–1-1→∅) → 𝐴 = ∅) |
| 7 | 1, 6 | exlimddv 1923 | . 2 ⊢ (𝐴 ≼ ∅ → 𝐴 = ∅) |
| 8 | 0ex 4176 | . . . 4 ⊢ ∅ ∈ V | |
| 9 | domrefg 6868 | . . . 4 ⊢ (∅ ∈ V → ∅ ≼ ∅) | |
| 10 | 8, 9 | ax-mp 5 | . . 3 ⊢ ∅ ≼ ∅ |
| 11 | breq1 4051 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ≼ ∅ ↔ ∅ ≼ ∅)) | |
| 12 | 10, 11 | mpbiri 168 | . 2 ⊢ (𝐴 = ∅ → 𝐴 ≼ ∅) |
| 13 | 7, 12 | impbii 126 | 1 ⊢ (𝐴 ≼ ∅ ↔ 𝐴 = ∅) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 Vcvv 2773 ∅c0 3462 class class class wbr 4048 ⟶wf 5273 –1-1→wf1 5274 ≼ cdom 6836 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-br 4049 df-opab 4111 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-en 6838 df-dom 6839 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |