![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dom0 | GIF version |
Description: A set dominated by the empty set is empty. (Contributed by NM, 22-Nov-2004.) |
Ref | Expression |
---|---|
dom0 | ⊢ (𝐴 ≼ ∅ ↔ 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brdomi 6803 | . . 3 ⊢ (𝐴 ≼ ∅ → ∃𝑥 𝑥:𝐴–1-1→∅) | |
2 | f1f 5459 | . . . . . 6 ⊢ (𝑥:𝐴–1-1→∅ → 𝑥:𝐴⟶∅) | |
3 | f00 5445 | . . . . . 6 ⊢ (𝑥:𝐴⟶∅ ↔ (𝑥 = ∅ ∧ 𝐴 = ∅)) | |
4 | 2, 3 | sylib 122 | . . . . 5 ⊢ (𝑥:𝐴–1-1→∅ → (𝑥 = ∅ ∧ 𝐴 = ∅)) |
5 | 4 | simprd 114 | . . . 4 ⊢ (𝑥:𝐴–1-1→∅ → 𝐴 = ∅) |
6 | 5 | adantl 277 | . . 3 ⊢ ((𝐴 ≼ ∅ ∧ 𝑥:𝐴–1-1→∅) → 𝐴 = ∅) |
7 | 1, 6 | exlimddv 1910 | . 2 ⊢ (𝐴 ≼ ∅ → 𝐴 = ∅) |
8 | 0ex 4156 | . . . 4 ⊢ ∅ ∈ V | |
9 | domrefg 6821 | . . . 4 ⊢ (∅ ∈ V → ∅ ≼ ∅) | |
10 | 8, 9 | ax-mp 5 | . . 3 ⊢ ∅ ≼ ∅ |
11 | breq1 4032 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ≼ ∅ ↔ ∅ ≼ ∅)) | |
12 | 10, 11 | mpbiri 168 | . 2 ⊢ (𝐴 = ∅ → 𝐴 ≼ ∅) |
13 | 7, 12 | impbii 126 | 1 ⊢ (𝐴 ≼ ∅ ↔ 𝐴 = ∅) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ∅c0 3446 class class class wbr 4029 ⟶wf 5250 –1-1→wf1 5251 ≼ cdom 6793 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-en 6795 df-dom 6796 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |