ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dom0 GIF version

Theorem dom0 6947
Description: A set dominated by the empty set is empty. (Contributed by NM, 22-Nov-2004.)
Assertion
Ref Expression
dom0 (𝐴 ≼ ∅ ↔ 𝐴 = ∅)

Proof of Theorem dom0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 brdomi 6848 . . 3 (𝐴 ≼ ∅ → ∃𝑥 𝑥:𝐴1-1→∅)
2 f1f 5490 . . . . . 6 (𝑥:𝐴1-1→∅ → 𝑥:𝐴⟶∅)
3 f00 5476 . . . . . 6 (𝑥:𝐴⟶∅ ↔ (𝑥 = ∅ ∧ 𝐴 = ∅))
42, 3sylib 122 . . . . 5 (𝑥:𝐴1-1→∅ → (𝑥 = ∅ ∧ 𝐴 = ∅))
54simprd 114 . . . 4 (𝑥:𝐴1-1→∅ → 𝐴 = ∅)
65adantl 277 . . 3 ((𝐴 ≼ ∅ ∧ 𝑥:𝐴1-1→∅) → 𝐴 = ∅)
71, 6exlimddv 1923 . 2 (𝐴 ≼ ∅ → 𝐴 = ∅)
8 0ex 4176 . . . 4 ∅ ∈ V
9 domrefg 6868 . . . 4 (∅ ∈ V → ∅ ≼ ∅)
108, 9ax-mp 5 . . 3 ∅ ≼ ∅
11 breq1 4051 . . 3 (𝐴 = ∅ → (𝐴 ≼ ∅ ↔ ∅ ≼ ∅))
1210, 11mpbiri 168 . 2 (𝐴 = ∅ → 𝐴 ≼ ∅)
137, 12impbii 126 1 (𝐴 ≼ ∅ ↔ 𝐴 = ∅)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1373  wcel 2177  Vcvv 2773  c0 3462   class class class wbr 4048  wf 5273  1-1wf1 5274  cdom 6836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-br 4049  df-opab 4111  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-en 6838  df-dom 6839
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator