![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dom0 | GIF version |
Description: A set dominated by the empty set is empty. (Contributed by NM, 22-Nov-2004.) |
Ref | Expression |
---|---|
dom0 | ⊢ (𝐴 ≼ ∅ ↔ 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brdomi 6597 | . . 3 ⊢ (𝐴 ≼ ∅ → ∃𝑥 𝑥:𝐴–1-1→∅) | |
2 | f1f 5286 | . . . . . 6 ⊢ (𝑥:𝐴–1-1→∅ → 𝑥:𝐴⟶∅) | |
3 | f00 5272 | . . . . . 6 ⊢ (𝑥:𝐴⟶∅ ↔ (𝑥 = ∅ ∧ 𝐴 = ∅)) | |
4 | 2, 3 | sylib 121 | . . . . 5 ⊢ (𝑥:𝐴–1-1→∅ → (𝑥 = ∅ ∧ 𝐴 = ∅)) |
5 | 4 | simprd 113 | . . . 4 ⊢ (𝑥:𝐴–1-1→∅ → 𝐴 = ∅) |
6 | 5 | adantl 273 | . . 3 ⊢ ((𝐴 ≼ ∅ ∧ 𝑥:𝐴–1-1→∅) → 𝐴 = ∅) |
7 | 1, 6 | exlimddv 1852 | . 2 ⊢ (𝐴 ≼ ∅ → 𝐴 = ∅) |
8 | 0ex 4015 | . . . 4 ⊢ ∅ ∈ V | |
9 | domrefg 6615 | . . . 4 ⊢ (∅ ∈ V → ∅ ≼ ∅) | |
10 | 8, 9 | ax-mp 7 | . . 3 ⊢ ∅ ≼ ∅ |
11 | breq1 3898 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ≼ ∅ ↔ ∅ ≼ ∅)) | |
12 | 10, 11 | mpbiri 167 | . 2 ⊢ (𝐴 = ∅ → 𝐴 ≼ ∅) |
13 | 7, 12 | impbii 125 | 1 ⊢ (𝐴 ≼ ∅ ↔ 𝐴 = ∅) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1314 ∈ wcel 1463 Vcvv 2657 ∅c0 3329 class class class wbr 3895 ⟶wf 5077 –1-1→wf1 5078 ≼ cdom 6587 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-nul 4014 ax-pow 4058 ax-pr 4091 ax-un 4315 |
This theorem depends on definitions: df-bi 116 df-3an 947 df-tru 1317 df-fal 1320 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ral 2395 df-rex 2396 df-v 2659 df-dif 3039 df-un 3041 df-in 3043 df-ss 3050 df-nul 3330 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-br 3896 df-opab 3950 df-id 4175 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-rn 4510 df-res 4511 df-ima 4512 df-fun 5083 df-fn 5084 df-f 5085 df-f1 5086 df-fo 5087 df-f1o 5088 df-en 6589 df-dom 6590 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |