| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dom0 | GIF version | ||
| Description: A set dominated by the empty set is empty. (Contributed by NM, 22-Nov-2004.) |
| Ref | Expression |
|---|---|
| dom0 | ⊢ (𝐴 ≼ ∅ ↔ 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdomi 6888 | . . 3 ⊢ (𝐴 ≼ ∅ → ∃𝑥 𝑥:𝐴–1-1→∅) | |
| 2 | f1f 5527 | . . . . . 6 ⊢ (𝑥:𝐴–1-1→∅ → 𝑥:𝐴⟶∅) | |
| 3 | f00 5513 | . . . . . 6 ⊢ (𝑥:𝐴⟶∅ ↔ (𝑥 = ∅ ∧ 𝐴 = ∅)) | |
| 4 | 2, 3 | sylib 122 | . . . . 5 ⊢ (𝑥:𝐴–1-1→∅ → (𝑥 = ∅ ∧ 𝐴 = ∅)) |
| 5 | 4 | simprd 114 | . . . 4 ⊢ (𝑥:𝐴–1-1→∅ → 𝐴 = ∅) |
| 6 | 5 | adantl 277 | . . 3 ⊢ ((𝐴 ≼ ∅ ∧ 𝑥:𝐴–1-1→∅) → 𝐴 = ∅) |
| 7 | 1, 6 | exlimddv 1945 | . 2 ⊢ (𝐴 ≼ ∅ → 𝐴 = ∅) |
| 8 | 0ex 4210 | . . . 4 ⊢ ∅ ∈ V | |
| 9 | domrefg 6908 | . . . 4 ⊢ (∅ ∈ V → ∅ ≼ ∅) | |
| 10 | 8, 9 | ax-mp 5 | . . 3 ⊢ ∅ ≼ ∅ |
| 11 | breq1 4085 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ≼ ∅ ↔ ∅ ≼ ∅)) | |
| 12 | 10, 11 | mpbiri 168 | . 2 ⊢ (𝐴 = ∅ → 𝐴 ≼ ∅) |
| 13 | 7, 12 | impbii 126 | 1 ⊢ (𝐴 ≼ ∅ ↔ 𝐴 = ∅) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ∅c0 3491 class class class wbr 4082 ⟶wf 5310 –1-1→wf1 5311 ≼ cdom 6876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-en 6878 df-dom 6879 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |