ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  domen GIF version

Theorem domen 6575
Description: Dominance in terms of equinumerosity. Example 1 of [Enderton] p. 146. (Contributed by NM, 15-Jun-1998.)
Hypothesis
Ref Expression
bren.1 𝐵 ∈ V
Assertion
Ref Expression
domen (𝐴𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem domen
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 bren.1 . . 3 𝐵 ∈ V
21brdom 6574 . 2 (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵)
3 vex 2644 . . . . . 6 𝑓 ∈ V
43f11o 5334 . . . . 5 (𝑓:𝐴1-1𝐵 ↔ ∃𝑥(𝑓:𝐴1-1-onto𝑥𝑥𝐵))
54exbii 1552 . . . 4 (∃𝑓 𝑓:𝐴1-1𝐵 ↔ ∃𝑓𝑥(𝑓:𝐴1-1-onto𝑥𝑥𝐵))
6 excom 1610 . . . 4 (∃𝑓𝑥(𝑓:𝐴1-1-onto𝑥𝑥𝐵) ↔ ∃𝑥𝑓(𝑓:𝐴1-1-onto𝑥𝑥𝐵))
75, 6bitri 183 . . 3 (∃𝑓 𝑓:𝐴1-1𝐵 ↔ ∃𝑥𝑓(𝑓:𝐴1-1-onto𝑥𝑥𝐵))
8 bren 6571 . . . . . 6 (𝐴𝑥 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝑥)
98anbi1i 449 . . . . 5 ((𝐴𝑥𝑥𝐵) ↔ (∃𝑓 𝑓:𝐴1-1-onto𝑥𝑥𝐵))
10 19.41v 1841 . . . . 5 (∃𝑓(𝑓:𝐴1-1-onto𝑥𝑥𝐵) ↔ (∃𝑓 𝑓:𝐴1-1-onto𝑥𝑥𝐵))
119, 10bitr4i 186 . . . 4 ((𝐴𝑥𝑥𝐵) ↔ ∃𝑓(𝑓:𝐴1-1-onto𝑥𝑥𝐵))
1211exbii 1552 . . 3 (∃𝑥(𝐴𝑥𝑥𝐵) ↔ ∃𝑥𝑓(𝑓:𝐴1-1-onto𝑥𝑥𝐵))
137, 12bitr4i 186 . 2 (∃𝑓 𝑓:𝐴1-1𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵))
142, 13bitri 183 1 (𝐴𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wex 1436  wcel 1448  Vcvv 2641  wss 3021   class class class wbr 3875  1-1wf1 5056  1-1-ontowf1o 5058  cen 6562  cdom 6563
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rex 2381  df-v 2643  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-br 3876  df-opab 3930  df-xp 4483  df-rel 4484  df-cnv 4485  df-dm 4487  df-rn 4488  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-en 6565  df-dom 6566
This theorem is referenced by:  domeng  6576  php5dom  6686
  Copyright terms: Public domain W3C validator