| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > domen | GIF version | ||
| Description: Dominance in terms of equinumerosity. Example 1 of [Enderton] p. 146. (Contributed by NM, 15-Jun-1998.) |
| Ref | Expression |
|---|---|
| bren.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| domen | ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bren.1 | . . 3 ⊢ 𝐵 ∈ V | |
| 2 | 1 | brdom 6889 | . 2 ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵) |
| 3 | vex 2802 | . . . . . 6 ⊢ 𝑓 ∈ V | |
| 4 | 3 | f11o 5601 | . . . . 5 ⊢ (𝑓:𝐴–1-1→𝐵 ↔ ∃𝑥(𝑓:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) |
| 5 | 4 | exbii 1651 | . . . 4 ⊢ (∃𝑓 𝑓:𝐴–1-1→𝐵 ↔ ∃𝑓∃𝑥(𝑓:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) |
| 6 | excom 1710 | . . . 4 ⊢ (∃𝑓∃𝑥(𝑓:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ↔ ∃𝑥∃𝑓(𝑓:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) | |
| 7 | 5, 6 | bitri 184 | . . 3 ⊢ (∃𝑓 𝑓:𝐴–1-1→𝐵 ↔ ∃𝑥∃𝑓(𝑓:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) |
| 8 | bren 6885 | . . . . . 6 ⊢ (𝐴 ≈ 𝑥 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝑥) | |
| 9 | 8 | anbi1i 458 | . . . . 5 ⊢ ((𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵) ↔ (∃𝑓 𝑓:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) |
| 10 | 19.41v 1949 | . . . . 5 ⊢ (∃𝑓(𝑓:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ↔ (∃𝑓 𝑓:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) | |
| 11 | 9, 10 | bitr4i 187 | . . . 4 ⊢ ((𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵) ↔ ∃𝑓(𝑓:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) |
| 12 | 11 | exbii 1651 | . . 3 ⊢ (∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵) ↔ ∃𝑥∃𝑓(𝑓:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) |
| 13 | 7, 12 | bitr4i 187 | . 2 ⊢ (∃𝑓 𝑓:𝐴–1-1→𝐵 ↔ ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵)) |
| 14 | 2, 13 | bitri 184 | 1 ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∃wex 1538 ∈ wcel 2200 Vcvv 2799 ⊆ wss 3197 class class class wbr 4082 –1-1→wf1 5311 –1-1-onto→wf1o 5313 ≈ cen 6875 ≼ cdom 6876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-xp 4722 df-rel 4723 df-cnv 4724 df-dm 4726 df-rn 4727 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-en 6878 df-dom 6879 |
| This theorem is referenced by: domeng 6891 php5dom 7012 |
| Copyright terms: Public domain | W3C validator |