![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > domen | GIF version |
Description: Dominance in terms of equinumerosity. Example 1 of [Enderton] p. 146. (Contributed by NM, 15-Jun-1998.) |
Ref | Expression |
---|---|
bren.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
domen | ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bren.1 | . . 3 ⊢ 𝐵 ∈ V | |
2 | 1 | brdom 6752 | . 2 ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵) |
3 | vex 2742 | . . . . . 6 ⊢ 𝑓 ∈ V | |
4 | 3 | f11o 5496 | . . . . 5 ⊢ (𝑓:𝐴–1-1→𝐵 ↔ ∃𝑥(𝑓:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) |
5 | 4 | exbii 1605 | . . . 4 ⊢ (∃𝑓 𝑓:𝐴–1-1→𝐵 ↔ ∃𝑓∃𝑥(𝑓:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) |
6 | excom 1664 | . . . 4 ⊢ (∃𝑓∃𝑥(𝑓:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ↔ ∃𝑥∃𝑓(𝑓:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) | |
7 | 5, 6 | bitri 184 | . . 3 ⊢ (∃𝑓 𝑓:𝐴–1-1→𝐵 ↔ ∃𝑥∃𝑓(𝑓:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) |
8 | bren 6749 | . . . . . 6 ⊢ (𝐴 ≈ 𝑥 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝑥) | |
9 | 8 | anbi1i 458 | . . . . 5 ⊢ ((𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵) ↔ (∃𝑓 𝑓:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) |
10 | 19.41v 1902 | . . . . 5 ⊢ (∃𝑓(𝑓:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ↔ (∃𝑓 𝑓:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) | |
11 | 9, 10 | bitr4i 187 | . . . 4 ⊢ ((𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵) ↔ ∃𝑓(𝑓:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) |
12 | 11 | exbii 1605 | . . 3 ⊢ (∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵) ↔ ∃𝑥∃𝑓(𝑓:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) |
13 | 7, 12 | bitr4i 187 | . 2 ⊢ (∃𝑓 𝑓:𝐴–1-1→𝐵 ↔ ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵)) |
14 | 2, 13 | bitri 184 | 1 ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∃wex 1492 ∈ wcel 2148 Vcvv 2739 ⊆ wss 3131 class class class wbr 4005 –1-1→wf1 5215 –1-1-onto→wf1o 5217 ≈ cen 6740 ≼ cdom 6741 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-xp 4634 df-rel 4635 df-cnv 4636 df-dm 4638 df-rn 4639 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-en 6743 df-dom 6744 |
This theorem is referenced by: domeng 6754 php5dom 6865 |
Copyright terms: Public domain | W3C validator |