| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > domen | GIF version | ||
| Description: Dominance in terms of equinumerosity. Example 1 of [Enderton] p. 146. (Contributed by NM, 15-Jun-1998.) |
| Ref | Expression |
|---|---|
| bren.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| domen | ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bren.1 | . . 3 ⊢ 𝐵 ∈ V | |
| 2 | 1 | brdom 6809 | . 2 ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵) |
| 3 | vex 2766 | . . . . . 6 ⊢ 𝑓 ∈ V | |
| 4 | 3 | f11o 5537 | . . . . 5 ⊢ (𝑓:𝐴–1-1→𝐵 ↔ ∃𝑥(𝑓:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) |
| 5 | 4 | exbii 1619 | . . . 4 ⊢ (∃𝑓 𝑓:𝐴–1-1→𝐵 ↔ ∃𝑓∃𝑥(𝑓:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) |
| 6 | excom 1678 | . . . 4 ⊢ (∃𝑓∃𝑥(𝑓:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ↔ ∃𝑥∃𝑓(𝑓:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) | |
| 7 | 5, 6 | bitri 184 | . . 3 ⊢ (∃𝑓 𝑓:𝐴–1-1→𝐵 ↔ ∃𝑥∃𝑓(𝑓:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) |
| 8 | bren 6806 | . . . . . 6 ⊢ (𝐴 ≈ 𝑥 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝑥) | |
| 9 | 8 | anbi1i 458 | . . . . 5 ⊢ ((𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵) ↔ (∃𝑓 𝑓:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) |
| 10 | 19.41v 1917 | . . . . 5 ⊢ (∃𝑓(𝑓:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ↔ (∃𝑓 𝑓:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) | |
| 11 | 9, 10 | bitr4i 187 | . . . 4 ⊢ ((𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵) ↔ ∃𝑓(𝑓:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) |
| 12 | 11 | exbii 1619 | . . 3 ⊢ (∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵) ↔ ∃𝑥∃𝑓(𝑓:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) |
| 13 | 7, 12 | bitr4i 187 | . 2 ⊢ (∃𝑓 𝑓:𝐴–1-1→𝐵 ↔ ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵)) |
| 14 | 2, 13 | bitri 184 | 1 ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∃wex 1506 ∈ wcel 2167 Vcvv 2763 ⊆ wss 3157 class class class wbr 4033 –1-1→wf1 5255 –1-1-onto→wf1o 5257 ≈ cen 6797 ≼ cdom 6798 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-rel 4670 df-cnv 4671 df-dm 4673 df-rn 4674 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-en 6800 df-dom 6801 |
| This theorem is referenced by: domeng 6811 php5dom 6924 |
| Copyright terms: Public domain | W3C validator |