Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > domen | GIF version |
Description: Dominance in terms of equinumerosity. Example 1 of [Enderton] p. 146. (Contributed by NM, 15-Jun-1998.) |
Ref | Expression |
---|---|
bren.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
domen | ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bren.1 | . . 3 ⊢ 𝐵 ∈ V | |
2 | 1 | brdom 6728 | . 2 ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵) |
3 | vex 2733 | . . . . . 6 ⊢ 𝑓 ∈ V | |
4 | 3 | f11o 5475 | . . . . 5 ⊢ (𝑓:𝐴–1-1→𝐵 ↔ ∃𝑥(𝑓:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) |
5 | 4 | exbii 1598 | . . . 4 ⊢ (∃𝑓 𝑓:𝐴–1-1→𝐵 ↔ ∃𝑓∃𝑥(𝑓:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) |
6 | excom 1657 | . . . 4 ⊢ (∃𝑓∃𝑥(𝑓:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ↔ ∃𝑥∃𝑓(𝑓:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) | |
7 | 5, 6 | bitri 183 | . . 3 ⊢ (∃𝑓 𝑓:𝐴–1-1→𝐵 ↔ ∃𝑥∃𝑓(𝑓:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) |
8 | bren 6725 | . . . . . 6 ⊢ (𝐴 ≈ 𝑥 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝑥) | |
9 | 8 | anbi1i 455 | . . . . 5 ⊢ ((𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵) ↔ (∃𝑓 𝑓:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) |
10 | 19.41v 1895 | . . . . 5 ⊢ (∃𝑓(𝑓:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ↔ (∃𝑓 𝑓:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) | |
11 | 9, 10 | bitr4i 186 | . . . 4 ⊢ ((𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵) ↔ ∃𝑓(𝑓:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) |
12 | 11 | exbii 1598 | . . 3 ⊢ (∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵) ↔ ∃𝑥∃𝑓(𝑓:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) |
13 | 7, 12 | bitr4i 186 | . 2 ⊢ (∃𝑓 𝑓:𝐴–1-1→𝐵 ↔ ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵)) |
14 | 2, 13 | bitri 183 | 1 ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∃wex 1485 ∈ wcel 2141 Vcvv 2730 ⊆ wss 3121 class class class wbr 3989 –1-1→wf1 5195 –1-1-onto→wf1o 5197 ≈ cen 6716 ≼ cdom 6717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-rel 4618 df-cnv 4619 df-dm 4621 df-rn 4622 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-en 6719 df-dom 6720 |
This theorem is referenced by: domeng 6730 php5dom 6841 |
Copyright terms: Public domain | W3C validator |