Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > domen | GIF version |
Description: Dominance in terms of equinumerosity. Example 1 of [Enderton] p. 146. (Contributed by NM, 15-Jun-1998.) |
Ref | Expression |
---|---|
bren.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
domen | ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bren.1 | . . 3 ⊢ 𝐵 ∈ V | |
2 | 1 | brdom 6684 | . 2 ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵) |
3 | vex 2712 | . . . . . 6 ⊢ 𝑓 ∈ V | |
4 | 3 | f11o 5440 | . . . . 5 ⊢ (𝑓:𝐴–1-1→𝐵 ↔ ∃𝑥(𝑓:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) |
5 | 4 | exbii 1582 | . . . 4 ⊢ (∃𝑓 𝑓:𝐴–1-1→𝐵 ↔ ∃𝑓∃𝑥(𝑓:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) |
6 | excom 1641 | . . . 4 ⊢ (∃𝑓∃𝑥(𝑓:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ↔ ∃𝑥∃𝑓(𝑓:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) | |
7 | 5, 6 | bitri 183 | . . 3 ⊢ (∃𝑓 𝑓:𝐴–1-1→𝐵 ↔ ∃𝑥∃𝑓(𝑓:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) |
8 | bren 6681 | . . . . . 6 ⊢ (𝐴 ≈ 𝑥 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝑥) | |
9 | 8 | anbi1i 454 | . . . . 5 ⊢ ((𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵) ↔ (∃𝑓 𝑓:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) |
10 | 19.41v 1879 | . . . . 5 ⊢ (∃𝑓(𝑓:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵) ↔ (∃𝑓 𝑓:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) | |
11 | 9, 10 | bitr4i 186 | . . . 4 ⊢ ((𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵) ↔ ∃𝑓(𝑓:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) |
12 | 11 | exbii 1582 | . . 3 ⊢ (∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵) ↔ ∃𝑥∃𝑓(𝑓:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) |
13 | 7, 12 | bitr4i 186 | . 2 ⊢ (∃𝑓 𝑓:𝐴–1-1→𝐵 ↔ ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵)) |
14 | 2, 13 | bitri 183 | 1 ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∃wex 1469 ∈ wcel 2125 Vcvv 2709 ⊆ wss 3098 class class class wbr 3961 –1-1→wf1 5160 –1-1-onto→wf1o 5162 ≈ cen 6672 ≼ cdom 6673 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-un 4388 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-v 2711 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-br 3962 df-opab 4022 df-xp 4585 df-rel 4586 df-cnv 4587 df-dm 4589 df-rn 4590 df-fn 5166 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 df-en 6675 df-dom 6676 |
This theorem is referenced by: domeng 6686 php5dom 6797 |
Copyright terms: Public domain | W3C validator |